Nuprl Lemma : band_ff
∀[u:𝔹]. (u ∧b ff ~ ff)
Proof
Definitions occuring in Statement : 
band: p ∧b q
, 
bfalse: ff
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
band: p ∧b q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
Lemmas referenced : 
bool_wf
Rules used in proof : 
sqequalReflexivity, 
universeIsType, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
isect_memberFormation_alt, 
sqequalRule, 
sqequalHypSubstitution, 
unionElimination, 
thin, 
equalityElimination, 
axiomSqEquality
Latex:
\mforall{}[u:\mBbbB{}].  (u  \mwedge{}\msubb{}  ff  \msim{}  ff)
Date html generated:
2020_05_19-PM-09_36_01
Last ObjectModification:
2020_02_17-PM-00_40_33
Theory : bool_1
Home
Index