Nuprl Lemma : comb_for_assert_wf

λb,z. (↑b) ∈ b:𝔹 ⟶ (↓True) ⟶ ℙ


Proof




Definitions occuring in Statement :  assert: b bool: 𝔹 prop: squash: T true: True member: t ∈ T lambda: λx.A[x] function: x:A ⟶ B[x]
Definitions unfolded in proof :  member: t ∈ T squash: T uall: [x:A]. B[x] prop:
Lemmas referenced :  assert_wf squash_wf true_wf bool_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaEquality_alt,  sqequalHypSubstitution imageElimination cut introduction extract_by_obid isectElimination thin hypothesisEquality equalityTransitivity hypothesis equalitySymmetry Error :universeIsType

Latex:
\mlambda{}b,z.  (\muparrow{}b)  \mmember{}  b:\mBbbB{}  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  \mBbbP{}



Date html generated: 2019_06_20-AM-11_30_57
Last ObjectModification: 2018_09_28-PM-11_31_35

Theory : bool_1


Home Index