Nuprl Lemma : comb_for_bor_wf
λp,q,z. (p ∨bq) ∈ p:𝔹 ⟶ q:𝔹 ⟶ (↓True) ⟶ 𝔹
Proof
Definitions occuring in Statement : 
bor: p ∨bq
, 
bool: 𝔹
, 
squash: ↓T
, 
true: True
, 
member: t ∈ T
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
member: t ∈ T
, 
squash: ↓T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
Lemmas referenced : 
bor_wf, 
squash_wf, 
true_wf, 
bool_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
cut, 
lemma_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry
Latex:
\mlambda{}p,q,z.  (p  \mvee{}\msubb{}q)  \mmember{}  p:\mBbbB{}  {}\mrightarrow{}  q:\mBbbB{}  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  \mBbbB{}
Date html generated:
2016_05_13-PM-03_56_01
Last ObjectModification:
2015_12_26-AM-10_52_47
Theory : bool_1
Home
Index