Nuprl Lemma : comb_for_lt_int_wf

λi,j,z. i <j ∈ i:ℤ ⟶ j:ℤ ⟶ (↓True) ⟶ 𝔹


Proof




Definitions occuring in Statement :  lt_int: i <j bool: 𝔹 squash: T true: True member: t ∈ T lambda: λx.A[x] function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  member: t ∈ T squash: T uall: [x:A]. B[x] prop:
Lemmas referenced :  lt_int_wf squash_wf true_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaEquality_alt,  sqequalHypSubstitution imageElimination cut introduction extract_by_obid isectElimination thin hypothesisEquality equalityTransitivity hypothesis equalitySymmetry Error :universeIsType,  Error :inhabitedIsType,  intEquality

Latex:
\mlambda{}i,j,z.  i  <z  j  \mmember{}  i:\mBbbZ{}  {}\mrightarrow{}  j:\mBbbZ{}  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  \mBbbB{}



Date html generated: 2019_06_20-AM-11_32_06
Last ObjectModification: 2018_09_28-PM-10_42_47

Theory : bool_1


Home Index