Step
*
of Lemma
atom_eq_sq_normalize
∀[b1,b2,i,j:Top]. (if i=j then b1[i] else b2 fi ~ if i=j then b1[j] else b2 fi )
BY
{ ((UnivCD THENA Auto)
THEN RepUR ``so_apply`` 0
THEN SqEqualBase
THEN SqequalSqle
THEN AssumeHasValue
THEN (HasValueD (-1) ORELSE (ExceptionCases (-1) THEN Try (SameException)))
THEN Try (((Decide ⌜i = j ∈ Atom⌝⋅ THENA Trivial)
THEN Try ((HypSubst' (-1) 0 THEN Auto))
THEN (Assert b2 ≤ b2 BY
Auto)
THEN NthHypSq (-1)
THEN EqCD
THEN Refine `atom_eqReduceFalseSq` []
THEN Auto))) }
1
1. b2 : Base
2. b1 : Base
3. j : Base
4. i : Base
5. is-exception(if i=j then b1 i else b2 fi )
6. i ∈ Atom
7. is-exception(j)
⊢ if i=j then b1 i else b2 fi ≤ if i=j then b1 j else b2 fi
2
1. b2 : Base
2. b1 : Base
3. j : Base
4. i : Base
5. is-exception(if i=j then b1 j else b2 fi )
6. i ∈ Atom
7. is-exception(j)
⊢ if i=j then b1 j else b2 fi ≤ if i=j then b1 i else b2 fi
Latex:
Latex:
\mforall{}[b1,b2,i,j:Top]. (if i=j then b1[i] else b2 fi \msim{} if i=j then b1[j] else b2 fi )
By
Latex:
((UnivCD THENA Auto)
THEN RepUR ``so\_apply`` 0
THEN SqEqualBase
THEN SqequalSqle
THEN AssumeHasValue
THEN (HasValueD (-1) ORELSE (ExceptionCases (-1) THEN Try (SameException)))
THEN Try (((Decide \mkleeneopen{}i = j\mkleeneclose{}\mcdot{} THENA Trivial)
THEN Try ((HypSubst' (-1) 0 THEN Auto))
THEN (Assert b2 \mleq{} b2 BY
Auto)
THEN NthHypSq (-1)
THEN EqCD
THEN Refine `atom\_eqReduceFalseSq` []
THEN Auto)))
Home
Index