Nuprl Lemma : atom_eq_sq_normalize
∀[b1,b2,i,j:Top].  (if i=j then b1[i] else b2 fi  ~ if i=j then b1[j] else b2 fi )
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x], 
top: Top, 
so_apply: x[s], 
atom_eq: if a=b then c else d fi , 
sqequal: s ~ t
Definitions unfolded in proof : 
so_apply: x[s], 
has-value: (a)↓, 
member: t ∈ T, 
and: P ∧ Q, 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
sq_type: SQType(T), 
implies: P ⇒ Q, 
guard: {T}, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
bfalse: ff, 
exists: ∃x:A. B[x], 
prop: ℙ, 
bnot: ¬bb, 
ifthenelse: if b then t else f fi , 
assert: ↑b, 
false: False, 
iff: P ⇐⇒ Q, 
not: ¬A, 
rev_implies: P ⇐ Q
Lemmas referenced : 
decidable__atom_equal, 
subtype_base_sq, 
atom_subtype_base, 
eq_atom_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_atom, 
has-value_wf_base, 
is-exception_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
bool_subtype_base, 
iff_transitivity, 
assert_wf, 
bnot_wf, 
not_wf, 
equal-wf-base, 
iff_weakening_uiff, 
assert_of_bnot, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
sqequalRule, 
thin, 
sqequalSqle, 
divergentSqle, 
callbyvalueAtomEq, 
sqequalHypSubstitution, 
hypothesis, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesisEquality, 
productElimination, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
unionElimination, 
instantiate, 
isectElimination, 
cumulativity, 
atomEquality, 
independent_isectElimination, 
independent_functionElimination, 
lambdaFormation, 
equalityElimination, 
because_Cache, 
atom_eqReduceTrueSq, 
sqleReflexivity, 
dependent_pairFormation, 
promote_hyp, 
voidElimination, 
independent_pairFormation, 
impliesFunctionality, 
atom_eqReduceFalseSq, 
atom_eqExceptionCases, 
axiomSqleEquality, 
exceptionSqequal, 
isect_memberFormation, 
sqequalAxiom, 
isect_memberEquality, 
exceptionAtomeq
Latex:
\mforall{}[b1,b2,i,j:Top].    (if  i=j  then  b1[i]  else  b2  fi    \msim{}  if  i=j  then  b1[j]  else  b2  fi  )
Date html generated:
2017_04_14-AM-07_22_12
Last ObjectModification:
2017_02_27-PM-02_55_18
Theory : call!by!value_2
Home
Index