Step
*
1
1
of Lemma
int_seg_decide_wf
.....assertion.....
1. i : ℤ
2. j : ℤ
3. F : {i..j-} ⟶ ℙ{u}
4. d : ∀k:{i..j-}. Dec(F[k])
⊢ ∀n:ℕ. ∀x:ℤ.
(((i ≤ x) ∧ (j ≤ (x + n)))
⇒ (fix((λG,x. if (x) < (j) then case d x of inl(z) => inl <x, z> | inr(z) => G (x + 1) else (inr (λx.⋅) ))) x
∈ Dec(∃k:{x..j-}. F[k])))
BY
{ ((InductionOnNat THEN Auto)
THEN (RW (SweepUpC UnrollRecursionC) 0 THENA Auto)
THEN Reduce 0
THEN RenameTo `a' `x'
THEN WeakAutoSplit
THEN (((GenConclAtAddr [2;1] THENA Auto') THEN UnfoldTop `decidable` (-2) THEN D -2 THEN Reduce 0) ORELSE Auto)
THEN ((SubsumeC ⌜Dec(∃k:{a + 1..j-}. F[k])⌝⋅
THEN Try ((BLemma `decidable-exists-int_seg-subtype` THEN Auto))
THEN BackThruSomeHyp
THEN Auto)
ORELSE Auto
)) }
Latex:
Latex:
.....assertion.....
1. i : \mBbbZ{}
2. j : \mBbbZ{}
3. F : \{i..j\msupminus{}\} {}\mrightarrow{} \mBbbP{}\{u\}
4. d : \mforall{}k:\{i..j\msupminus{}\}. Dec(F[k])
\mvdash{} \mforall{}n:\mBbbN{}. \mforall{}x:\mBbbZ{}.
(((i \mleq{} x) \mwedge{} (j \mleq{} (x + n)))
{}\mRightarrow{} (fix((\mlambda{}G,x. if (x) < (j)
then case d x of inl(z) => inl <x, z> | inr(z) => G (x + 1)
else (inr (\mlambda{}x.\mcdot{}) )))
x \mmember{} Dec(\mexists{}k:\{x..j\msupminus{}\}. F[k])))
By
Latex:
((InductionOnNat THEN Auto)
THEN (RW (SweepUpC UnrollRecursionC) 0 THENA Auto)
THEN Reduce 0
THEN RenameTo `a' `x'
THEN WeakAutoSplit
THEN (((GenConclAtAddr [2;1] THENA Auto') THEN UnfoldTop `decidable` (-2) THEN D -2 THEN Reduce 0)
ORELSE Auto
)
THEN ((SubsumeC \mkleeneopen{}Dec(\mexists{}k:\{a + 1..j\msupminus{}\}. F[k])\mkleeneclose{}\mcdot{}
THEN Try ((BLemma `decidable-exists-int\_seg-subtype` THEN Auto))
THEN BackThruSomeHyp
THEN Auto)
ORELSE Auto
))
Home
Index