Nuprl Lemma : int_seg_decide_wf
∀[i,j:ℤ]. ∀[F:{i..j-} ⟶ ℙ{u}]. ∀[d:∀k:{i..j-}. Dec(F[k])].  (int_seg_decide(d;i;j) ∈ Dec(∃k:{i..j-}. F[k]))
Proof
Definitions occuring in Statement : 
int_seg_decide: int_seg_decide(d;i;j)
, 
int_seg: {i..j-}
, 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
guard: {T}
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
less_than: a < b
, 
less_than': less_than'(a;b)
, 
top: Top
, 
true: True
, 
squash: ↓T
, 
not: ¬A
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
exists: ∃x:A. B[x]
, 
le: A ≤ B
, 
subtract: n - m
, 
subtype_rel: A ⊆r B
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
so_lambda: λ2x.t[x]
, 
sq_stable: SqStable(P)
, 
cand: A c∧ B
, 
int_upper: {i...}
, 
int_seg_decide: int_seg_decide(d;i;j)
, 
nat_plus: ℕ+
Lemmas referenced : 
int_seg_wf, 
decidable_wf, 
istype-int, 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
istype-less_than, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
istype-top, 
istype-void, 
istype-le, 
less-iff-le, 
condition-implies-le, 
minus-one-mul, 
add-associates, 
zero-add, 
minus-one-mul-top, 
add_functionality_wrt_le, 
add-swap, 
add-commutes, 
le-add-cancel, 
eqff_to_assert, 
int_subtype_base, 
bool_subtype_base, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
iff_transitivity, 
assert_wf, 
bnot_wf, 
not_wf, 
less_than_wf, 
iff_weakening_uiff, 
assert_of_bnot, 
istype-assert, 
member-not, 
exists_wf, 
sq_stable__le, 
subtract-1-ge-0, 
le_transitivity, 
le_reflexive, 
decidable__le, 
istype-false, 
not-le-2, 
minus-add, 
subtract_wf, 
decidable-exists-int_seg-subtype, 
le-add-cancel2, 
not-lt-2, 
istype-nat, 
mul-associates, 
mul-distributes, 
omega-shadow, 
mul-distributes-right, 
two-mul, 
one-mul, 
minus-zero, 
minus-minus, 
add-zero, 
zero-mul, 
add-mul-special, 
false_wf, 
le_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :functionIsType, 
Error :universeIsType, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
instantiate, 
applyEquality, 
Error :isect_memberEquality_alt, 
Error :isectIsTypeImplies, 
Error :inhabitedIsType, 
universeEquality, 
Error :lambdaFormation_alt, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
independent_functionElimination, 
voidElimination, 
Error :lambdaEquality_alt, 
dependent_functionElimination, 
Error :functionIsTypeImplies, 
productElimination, 
unionElimination, 
equalityElimination, 
because_Cache, 
lessCases, 
axiomSqEquality, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
functionExtensionality, 
Error :dependent_set_memberEquality_alt, 
Error :productIsType, 
minusEquality, 
addEquality, 
Error :inlEquality_alt, 
Error :dependent_pairEquality_alt, 
Error :equalityIsType1, 
Error :dependent_pairFormation_alt, 
Error :equalityIsType4, 
baseApply, 
closedConclusion, 
promote_hyp, 
cumulativity, 
Error :inrEquality_alt, 
multiplyEquality, 
intEquality, 
lambdaEquality, 
lambdaFormation, 
voidEquality, 
isect_memberEquality, 
dependent_set_memberEquality
Latex:
\mforall{}[i,j:\mBbbZ{}].  \mforall{}[F:\{i..j\msupminus{}\}  {}\mrightarrow{}  \mBbbP{}\{u\}].  \mforall{}[d:\mforall{}k:\{i..j\msupminus{}\}.  Dec(F[k])].
    (int\_seg\_decide(d;i;j)  \mmember{}  Dec(\mexists{}k:\{i..j\msupminus{}\}.  F[k]))
Date html generated:
2019_06_20-AM-11_28_08
Last ObjectModification:
2018_10_27-PM-05_54_54
Theory : call!by!value_2
Home
Index