Nuprl Lemma : int_seg_decide_wf

[i,j:ℤ]. ∀[F:{i..j-} ⟶ ℙ{u}]. ∀[d:∀k:{i..j-}. Dec(F[k])].  (int_seg_decide(d;i;j) ∈ Dec(∃k:{i..j-}. F[k]))


Proof




Definitions occuring in Statement :  int_seg_decide: int_seg_decide(d;i;j) int_seg: {i..j-} decidable: Dec(P) uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] member: t ∈ T function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] so_apply: x[s] prop: nat: implies:  Q false: False ge: i ≥  guard: {T} uimplies: supposing a and: P ∧ Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) less_than: a < b less_than': less_than'(a;b) top: Top true: True squash: T not: ¬A int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q exists: x:A. B[x] le: A ≤ B subtract: m subtype_rel: A ⊆B bfalse: ff sq_type: SQType(T) bnot: ¬bb ifthenelse: if then else fi  assert: b iff: ⇐⇒ Q rev_implies:  Q so_lambda: λ2x.t[x] sq_stable: SqStable(P) cand: c∧ B int_upper: {i...} int_seg_decide: int_seg_decide(d;i;j) nat_plus: +
Lemmas referenced :  int_seg_wf decidable_wf istype-int nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf istype-less_than lt_int_wf eqtt_to_assert assert_of_lt_int istype-top istype-void istype-le less-iff-le condition-implies-le minus-one-mul add-associates zero-add minus-one-mul-top add_functionality_wrt_le add-swap add-commutes le-add-cancel eqff_to_assert int_subtype_base bool_subtype_base bool_cases_sqequal subtype_base_sq bool_wf iff_transitivity assert_wf bnot_wf not_wf less_than_wf iff_weakening_uiff assert_of_bnot istype-assert member-not exists_wf sq_stable__le subtract-1-ge-0 le_transitivity le_reflexive decidable__le istype-false not-le-2 minus-add subtract_wf decidable-exists-int_seg-subtype le-add-cancel2 not-lt-2 istype-nat mul-associates mul-distributes omega-shadow mul-distributes-right two-mul one-mul minus-zero minus-minus add-zero zero-mul add-mul-special false_wf le_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry Error :functionIsType,  Error :universeIsType,  extract_by_obid isectElimination thin hypothesisEquality instantiate applyEquality Error :isect_memberEquality_alt,  Error :isectIsTypeImplies,  Error :inhabitedIsType,  universeEquality Error :lambdaFormation_alt,  setElimination rename intWeakElimination natural_numberEquality independent_isectElimination independent_functionElimination voidElimination Error :lambdaEquality_alt,  dependent_functionElimination Error :functionIsTypeImplies,  productElimination unionElimination equalityElimination because_Cache lessCases axiomSqEquality independent_pairFormation imageMemberEquality baseClosed imageElimination functionExtensionality Error :dependent_set_memberEquality_alt,  Error :productIsType,  minusEquality addEquality Error :inlEquality_alt,  Error :dependent_pairEquality_alt,  Error :equalityIsType1,  Error :dependent_pairFormation_alt,  Error :equalityIsType4,  baseApply closedConclusion promote_hyp cumulativity Error :inrEquality_alt,  multiplyEquality intEquality lambdaEquality lambdaFormation voidEquality isect_memberEquality dependent_set_memberEquality

Latex:
\mforall{}[i,j:\mBbbZ{}].  \mforall{}[F:\{i..j\msupminus{}\}  {}\mrightarrow{}  \mBbbP{}\{u\}].  \mforall{}[d:\mforall{}k:\{i..j\msupminus{}\}.  Dec(F[k])].
    (int\_seg\_decide(d;i;j)  \mmember{}  Dec(\mexists{}k:\{i..j\msupminus{}\}.  F[k]))



Date html generated: 2019_06_20-AM-11_28_08
Last ObjectModification: 2018_10_27-PM-05_54_54

Theory : call!by!value_2


Home Index