Nuprl Lemma : decidable-exists-int_seg-subtype
∀[i:ℤ]. ∀[j:{i + 1...}]. ∀[P:{i..j-} ⟶ ℙ].  Dec(∃k:{i + 1..j-}. P[k]) ⊆r Dec(∃k:{i..j-}. P[k]) supposing ¬P[i]
Proof
Definitions occuring in Statement : 
int_upper: {i...}
, 
int_seg: {i..j-}
, 
decidable: Dec(P)
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
int_upper: {i...}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
exists: ∃x:A. B[x]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
false: False
, 
prop: ℙ
, 
uiff: uiff(P;Q)
, 
subtract: n - m
, 
less_than': less_than'(a;b)
, 
true: True
, 
top: Top
, 
sq_type: SQType(T)
, 
guard: {T}
Lemmas referenced : 
decidable-subtype, 
exists_wf, 
int_seg_wf, 
decidable__le, 
false_wf, 
not-le-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
add-associates, 
le-add-cancel, 
and_wf, 
le_wf, 
less_than_wf, 
not_wf, 
le_reflexive, 
decidable__lt, 
not-lt-2, 
int_upper_wf, 
decidable__int_equal, 
not-equal-2, 
zero-add, 
le-add-cancel2, 
subtype_base_sq, 
int_subtype_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
addEquality, 
hypothesisEquality, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
because_Cache, 
independent_isectElimination, 
productElimination, 
dependent_pairEquality, 
dependent_set_memberEquality, 
independent_pairFormation, 
dependent_functionElimination, 
unionElimination, 
lambdaFormation, 
voidElimination, 
independent_functionElimination, 
minusEquality, 
dependent_pairFormation, 
axiomEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
cumulativity, 
universeEquality, 
voidEquality, 
intEquality, 
instantiate
Latex:
\mforall{}[i:\mBbbZ{}].  \mforall{}[j:\{i  +  1...\}].  \mforall{}[P:\{i..j\msupminus{}\}  {}\mrightarrow{}  \mBbbP{}].
    Dec(\mexists{}k:\{i  +  1..j\msupminus{}\}.  P[k])  \msubseteq{}r  Dec(\mexists{}k:\{i..j\msupminus{}\}.  P[k])  supposing  \mneg{}P[i]
Date html generated:
2016_05_13-PM-03_47_38
Last ObjectModification:
2015_12_26-AM-09_58_39
Theory : call!by!value_2
Home
Index