Nuprl Lemma : decidable-subtype
∀[P,Q:ℙ].  (Dec(P) ⊆r Dec(Q)) supposing ((Q 
⇒ P) and (P ⊆r Q))
Proof
Definitions occuring in Statement : 
decidable: Dec(P)
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
decidable: Dec(P)
, 
subtype_rel: A ⊆r B
, 
or: P ∨ Q
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
squash: ↓T
Lemmas referenced : 
subtype_rel_wf, 
or_wf, 
subtype_rel_not, 
not_wf, 
subtype_rel_union
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaEquality, 
sqequalHypSubstitution, 
hypothesisEquality, 
applyEquality, 
lemma_by_obid, 
isectElimination, 
thin, 
hypothesis, 
independent_isectElimination, 
lambdaFormation, 
independent_functionElimination, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
because_Cache, 
axiomEquality, 
functionEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[P,Q:\mBbbP{}].    (Dec(P)  \msubseteq{}r  Dec(Q))  supposing  ((Q  {}\mRightarrow{}  P)  and  (P  \msubseteq{}r  Q))
Date html generated:
2016_05_13-PM-03_19_47
Last ObjectModification:
2016_01_14-PM-04_34_13
Theory : subtype_0
Home
Index