Step
*
1
of Lemma
not_has-value_decidable_on_base
1. magic : ∀t:Base. ((t)↓ ∨ (¬(t)↓))@i
⊢ False
BY
{ ((Assert (λn.case magic n of inl(a) => ⊥ | inr(b) => λx.x) ⊥ ≤ (λn.case magic n of inl(a) => ⊥ | inr(b) => λx.x)
(λx.x) BY
Auto)
THEN Reduce (-1)
THEN MoveToConcl (-1)
THEN Fold `not` 0
THEN Assert ⌜(λx.x)↓⌝⋅
THEN Try (Complete ((RepUR ``has-value true member`` 0 THEN Auto)))) }
1
1. magic : ∀t:Base. ((t)↓ ∨ (¬(t)↓))@i
2. (λx.x)↓
⊢ ¬(case magic ⊥ of inl(a) => ⊥ | inr(b) => λx.x ≤ case magic (λx.x) of inl(a) => ⊥ | inr(b) => λx.x)
Latex:
Latex:
1. magic : \mforall{}t:Base. ((t)\mdownarrow{} \mvee{} (\mneg{}(t)\mdownarrow{}))@i
\mvdash{} False
By
Latex:
((Assert (\mlambda{}n.case magic n of inl(a) => \mbot{} | inr(b) => \mlambda{}x.x) \mbot{} \mleq{} (\mlambda{}n.case magic n
of inl(a) =>
\mbot{}
| inr(b) =>
\mlambda{}x.x)
(\mlambda{}x.x) BY
Auto)
THEN Reduce (-1)
THEN MoveToConcl (-1)
THEN Fold `not` 0
THEN Assert \mkleeneopen{}(\mlambda{}x.x)\mdownarrow{}\mkleeneclose{}\mcdot{}
THEN Try (Complete ((RepUR ``has-value true member`` 0 THEN Auto))))
Home
Index