Nuprl Lemma : not_has-value_decidable_on_base

¬(∀t:Base. ((t)↓ ∨ (t)↓)))


Proof




Definitions occuring in Statement :  has-value: (a)↓ all: x:A. B[x] not: ¬A or: P ∨ Q base: Base
Definitions unfolded in proof :  not: ¬A implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] false: False has-value: (a)↓ all: x:A. B[x] or: P ∨ Q
Lemmas referenced :  equal_wf not-id-sqle-bottom is-exception_wf exception-not-bottom bottom_diverge not_wf has-value_wf_base or_wf base_wf all_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation rename cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis sqequalRule lambdaEquality hypothesisEquality sqleRule sqleReflexivity divergentSqle independent_functionElimination voidElimination baseClosed applyEquality unionElimination equalityTransitivity equalitySymmetry dependent_functionElimination

Latex:
\mneg{}(\mforall{}t:Base.  ((t)\mdownarrow{}  \mvee{}  (\mneg{}(t)\mdownarrow{})))



Date html generated: 2016_05_13-PM-03_45_59
Last ObjectModification: 2016_01_14-PM-07_11_28

Theory : call!by!value_2


Home Index