Nuprl Lemma : not-id-sqle-bottom
¬(λx.x ≤ ⊥)
Proof
Definitions occuring in Statement : 
bottom: ⊥
, 
not: ¬A
, 
lambda: λx.A[x]
, 
sqle: s ≤ t
Definitions unfolded in proof : 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
all: ∀x:A. B[x]
, 
guard: {T}
, 
true: True
, 
false: False
Lemmas referenced : 
sqle_wf_base, 
bottom-sqle, 
istype-void, 
strictness-apply, 
subtype_base_sq, 
int_subtype_base
Rules used in proof : 
hypothesis, 
baseClosed, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
Error :universeIsType, 
Error :lambdaFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
sqequalSqle, 
Error :isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
natural_numberEquality, 
instantiate, 
cumulativity, 
intEquality, 
independent_isectElimination, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination
Latex:
\mneg{}(\mlambda{}x.x  \mleq{}  \mbot{})
Date html generated:
2019_06_20-AM-11_27_21
Last ObjectModification:
2018_10_15-PM-04_53_50
Theory : call!by!value_2
Home
Index