Nuprl Lemma : not-id-sqle-bottom

¬x.x ≤ ⊥)


Proof




Definitions occuring in Statement :  bottom: not: ¬A lambda: λx.A[x] sqle: s ≤ t
Definitions unfolded in proof :  prop: uall: [x:A]. B[x] member: t ∈ T implies:  Q not: ¬A top: Top uimplies: supposing a sq_type: SQType(T) all: x:A. B[x] guard: {T} true: True false: False
Lemmas referenced :  sqle_wf_base bottom-sqle istype-void strictness-apply subtype_base_sq int_subtype_base
Rules used in proof :  hypothesis baseClosed thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut Error :universeIsType,  Error :lambdaFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution sqequalSqle Error :isect_memberEquality_alt,  voidElimination sqequalRule natural_numberEquality instantiate cumulativity intEquality independent_isectElimination dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination

Latex:
\mneg{}(\mlambda{}x.x  \mleq{}  \mbot{})



Date html generated: 2019_06_20-AM-11_27_21
Last ObjectModification: 2018_10_15-PM-04_53_50

Theory : call!by!value_2


Home Index