Nuprl Lemma : coW-subtype1

[A:Type]. ∀[B:A ⟶ Type].  ((a:A × (B[a] ⟶ coW(A;a.B[a]))) ⊆coW(A;a.B[a]))


Proof




Definitions occuring in Statement :  coW: coW(A;a.B[a]) subtype_rel: A ⊆B uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ext-eq: A ≡ B and: P ∧ Q
Lemmas referenced :  coW-ext istype-universe
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality Error :functionIsType,  Error :universeIsType,  because_Cache instantiate universeEquality productElimination

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].    ((a:A  \mtimes{}  (B[a]  {}\mrightarrow{}  coW(A;a.B[a])))  \msubseteq{}r  coW(A;a.B[a]))



Date html generated: 2019_06_20-PM-00_56_03
Last ObjectModification: 2019_01_02-PM-01_32_39

Theory : co-recursion-2


Home Index