Nuprl Lemma : coW-subtype1
∀[A:Type]. ∀[B:A ⟶ Type].  ((a:A × (B[a] ⟶ coW(A;a.B[a]))) ⊆r coW(A;a.B[a]))
Proof
Definitions occuring in Statement : 
coW: coW(A;a.B[a])
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
ext-eq: A ≡ B
, 
and: P ∧ Q
Lemmas referenced : 
coW-ext, 
istype-universe
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
Error :functionIsType, 
Error :universeIsType, 
because_Cache, 
instantiate, 
universeEquality, 
productElimination
Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].    ((a:A  \mtimes{}  (B[a]  {}\mrightarrow{}  coW(A;a.B[a])))  \msubseteq{}r  coW(A;a.B[a]))
Date html generated:
2019_06_20-PM-00_56_03
Last ObjectModification:
2019_01_02-PM-01_32_39
Theory : co-recursion-2
Home
Index