Step
*
1
1
2
1
of Lemma
coW-trans_wf
.....wf..... 
1. A : 𝕌'
2. B : A ⟶ Type
3. w1 : coW(A;a.B[a])
4. w2 : coW(A;a.B[a])
5. w3 : coW(A;a.B[a])
6. n : ℤ
7. 0 < n
8. ∀[X:win2strat(coW-game(a.B[a];w1;w2);n - 1)]. ∀[Y:win2strat(coW-game(a.B[a];w2;w3);n - 1)].
     (coW-trans(X; Y) ∈ win2strat(coW-game(a.B[a];w1;w3);n - 1))
9. X : s:win2strat(coW-game(a.B[a];w1;w2);n - 1) ⋂ moves:{f:strat2play(coW-game(a.B[a];w1;w2);n - 1;s)| 
                                                          ||f|| = (2 * n) ∈ ℤ}  ⟶ {p:Pos(coW-game(a.B[a];w1;w2))| Legal\000C2(moves[(2 * n) - 1];p)} 
10. X ∈ win2strat(coW-game(a.B[a];w1;w2);n - 1)
11. X ∈ moves:{f:strat2play(coW-game(a.B[a];w1;w2);n - 1;X)| ||f|| = (2 * n) ∈ ℤ}  ⟶ {p:Pos(coW-game(a.B[a];w1;w2))| 
                                                                            Legal2(moves[(2 * n) - 1];p)} 
12. Y : s:win2strat(coW-game(a.B[a];w2;w3);n - 1) ⋂ moves:{f:strat2play(coW-game(a.B[a];w2;w3);n - 1;s)| 
                                                           ||f|| = (2 * n) ∈ ℤ}  ⟶ {p:Pos(coW-game(a.B[a];w2;w3))| Lega\000Cl2(moves[(2 * n) - 1];p)} 
13. Y ∈ win2strat(coW-game(a.B[a];w2;w3);n - 1)
14. Y ∈ moves:{f:strat2play(coW-game(a.B[a];w2;w3);n - 1;Y)| ||f|| = (2 * n) ∈ ℤ}  ⟶ {p:Pos(coW-game(a.B[a];w2;w3))| 
                                                                            Legal2(moves[(2 * n) - 1];p)} 
15. ∀k:ℕ. ((k ≤ n) 
⇒ (X ∈ win2strat(coW-game(a.B[a];w1;w2);k)))
16. ∀k:ℕ. ((k ≤ n) 
⇒ (Y ∈ win2strat(coW-game(a.B[a];w2;w3);k)))
17. moves : {f:strat2play(coW-game(a.B[a];w1;w3);n - 1;coW-trans(X; Y))| ||f|| = (2 * n) ∈ ℤ} 
18. k : ℤ
19. 0 < k
20. k ≤ (n - 1)
21. m1 : strat2play(coW-game(a.B[a];w1;w3);k;coW-trans(X; Y))
22. ||m1|| = ((2 * k) + 2) ∈ ℤ
23. 1 ≤ k
24. (2 * 1) ≤ (2 * k)
25. ¬(||m1|| = 0 ∈ ℤ)
⊢ seq-truncate(m1;||m1|| - 2) ∈ {f:strat2play(coW-game(a.B[a];w1;w3);k - 1;coW-trans(X; Y))| 
                                 ||f|| = ((2 * (k - 1)) + 2) ∈ ℤ} 
BY
{ Fold `play-truncate` 0 }
1
1. A : 𝕌'
2. B : A ⟶ Type
3. w1 : coW(A;a.B[a])
4. w2 : coW(A;a.B[a])
5. w3 : coW(A;a.B[a])
6. n : ℤ
7. 0 < n
8. ∀[X:win2strat(coW-game(a.B[a];w1;w2);n - 1)]. ∀[Y:win2strat(coW-game(a.B[a];w2;w3);n - 1)].
     (coW-trans(X; Y) ∈ win2strat(coW-game(a.B[a];w1;w3);n - 1))
9. X : s:win2strat(coW-game(a.B[a];w1;w2);n - 1) ⋂ moves:{f:strat2play(coW-game(a.B[a];w1;w2);n - 1;s)| 
                                                          ||f|| = (2 * n) ∈ ℤ}  ⟶ {p:Pos(coW-game(a.B[a];w1;w2))| Legal\000C2(moves[(2 * n) - 1];p)} 
10. X ∈ win2strat(coW-game(a.B[a];w1;w2);n - 1)
11. X ∈ moves:{f:strat2play(coW-game(a.B[a];w1;w2);n - 1;X)| ||f|| = (2 * n) ∈ ℤ}  ⟶ {p:Pos(coW-game(a.B[a];w1;w2))| 
                                                                            Legal2(moves[(2 * n) - 1];p)} 
12. Y : s:win2strat(coW-game(a.B[a];w2;w3);n - 1) ⋂ moves:{f:strat2play(coW-game(a.B[a];w2;w3);n - 1;s)| 
                                                           ||f|| = (2 * n) ∈ ℤ}  ⟶ {p:Pos(coW-game(a.B[a];w2;w3))| Lega\000Cl2(moves[(2 * n) - 1];p)} 
13. Y ∈ win2strat(coW-game(a.B[a];w2;w3);n - 1)
14. Y ∈ moves:{f:strat2play(coW-game(a.B[a];w2;w3);n - 1;Y)| ||f|| = (2 * n) ∈ ℤ}  ⟶ {p:Pos(coW-game(a.B[a];w2;w3))| 
                                                                            Legal2(moves[(2 * n) - 1];p)} 
15. ∀k:ℕ. ((k ≤ n) 
⇒ (X ∈ win2strat(coW-game(a.B[a];w1;w2);k)))
16. ∀k:ℕ. ((k ≤ n) 
⇒ (Y ∈ win2strat(coW-game(a.B[a];w2;w3);k)))
17. moves : {f:strat2play(coW-game(a.B[a];w1;w3);n - 1;coW-trans(X; Y))| ||f|| = (2 * n) ∈ ℤ} 
18. k : ℤ
19. 0 < k
20. k ≤ (n - 1)
21. m1 : strat2play(coW-game(a.B[a];w1;w3);k;coW-trans(X; Y))
22. ||m1|| = ((2 * k) + 2) ∈ ℤ
23. 1 ≤ k
24. (2 * 1) ≤ (2 * k)
25. ¬(||m1|| = 0 ∈ ℤ)
⊢ play-truncate(m1;||m1|| - 2) ∈ {f:strat2play(coW-game(a.B[a];w1;w3);k - 1;coW-trans(X; Y))| 
                                  ||f|| = ((2 * (k - 1)) + 2) ∈ ℤ} 
Latex:
Latex:
.....wf..... 
1.  A  :  \mBbbU{}'
2.  B  :  A  {}\mrightarrow{}  Type
3.  w1  :  coW(A;a.B[a])
4.  w2  :  coW(A;a.B[a])
5.  w3  :  coW(A;a.B[a])
6.  n  :  \mBbbZ{}
7.  0  <  n
8.  \mforall{}[X:win2strat(coW-game(a.B[a];w1;w2);n  -  1)].  \mforall{}[Y:win2strat(coW-game(a.B[a];w2;w3);n  -  1)].
          (coW-trans(X;  Y)  \mmember{}  win2strat(coW-game(a.B[a];w1;w3);n  -  1))
9.  X  :  s:win2strat(coW-game(a.B[a];w1;w2);n  -  1)
              \mcap{}  moves:\{f:strat2play(coW-game(a.B[a];w1;w2);n  -  1;s)|  ||f||  =  (2  *  n)\} 
              {}\mrightarrow{}  \{p:Pos(coW-game(a.B[a];w1;w2))|  Legal2(moves[(2  *  n)  -  1];p)\} 
10.  X  \mmember{}  win2strat(coW-game(a.B[a];w1;w2);n  -  1)
11.  X  \mmember{}  moves:\{f:strat2play(coW-game(a.B[a];w1;w2);n  -  1;X)|  ||f||  =  (2  *  n)\} 
        {}\mrightarrow{}  \{p:Pos(coW-game(a.B[a];w1;w2))|  Legal2(moves[(2  *  n)  -  1];p)\} 
12.  Y  :  s:win2strat(coW-game(a.B[a];w2;w3);n  -  1)
                \mcap{}  moves:\{f:strat2play(coW-game(a.B[a];w2;w3);n  -  1;s)|  ||f||  =  (2  *  n)\} 
                {}\mrightarrow{}  \{p:Pos(coW-game(a.B[a];w2;w3))|  Legal2(moves[(2  *  n)  -  1];p)\} 
13.  Y  \mmember{}  win2strat(coW-game(a.B[a];w2;w3);n  -  1)
14.  Y  \mmember{}  moves:\{f:strat2play(coW-game(a.B[a];w2;w3);n  -  1;Y)|  ||f||  =  (2  *  n)\} 
        {}\mrightarrow{}  \{p:Pos(coW-game(a.B[a];w2;w3))|  Legal2(moves[(2  *  n)  -  1];p)\} 
15.  \mforall{}k:\mBbbN{}.  ((k  \mleq{}  n)  {}\mRightarrow{}  (X  \mmember{}  win2strat(coW-game(a.B[a];w1;w2);k)))
16.  \mforall{}k:\mBbbN{}.  ((k  \mleq{}  n)  {}\mRightarrow{}  (Y  \mmember{}  win2strat(coW-game(a.B[a];w2;w3);k)))
17.  moves  :  \{f:strat2play(coW-game(a.B[a];w1;w3);n  -  1;coW-trans(X;  Y))|  ||f||  =  (2  *  n)\} 
18.  k  :  \mBbbZ{}
19.  0  <  k
20.  k  \mleq{}  (n  -  1)
21.  m1  :  strat2play(coW-game(a.B[a];w1;w3);k;coW-trans(X;  Y))
22.  ||m1||  =  ((2  *  k)  +  2)
23.  1  \mleq{}  k
24.  (2  *  1)  \mleq{}  (2  *  k)
25.  \mneg{}(||m1||  =  0)
\mvdash{}  seq-truncate(m1;||m1||  -  2)  \mmember{}  \{f:strat2play(coW-game(a.B[a];w1;w3);k  -  1;coW-trans(X;  Y))| 
                                                                  ||f||  =  ((2  *  (k  -  1))  +  2)\} 
By
Latex:
Fold  `play-truncate`  0
Home
Index