Nuprl Lemma : coW-trans_wf

[A:𝕌']. ∀[B:A ⟶ Type]. ∀[w1,w2,w3:coW(A;a.B[a])]. ∀[n:ℕ]. ∀[X:win2strat(coW-game(a.B[a];w1;w2);n)].
[Y:win2strat(coW-game(a.B[a];w2;w3);n)].
  (coW-trans(X; Y) ∈ win2strat(coW-game(a.B[a];w1;w3);n))


Proof




Definitions occuring in Statement :  coW-trans: coW-trans(X; Y) coW-game: coW-game(a.B[a];w;w') coW: coW(A;a.B[a]) win2strat: win2strat(g;n) nat: uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] top: Top and: P ∧ Q prop: win2strat: win2strat(g;n) eq_int: (i =z j) subtract: m ifthenelse: if then else fi  btrue: tt so_lambda: λ2x.t[x] so_apply: x[s] decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B guard: {T} bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) bfalse: ff iff: ⇐⇒ Q rev_implies:  Q sq_type: SQType(T) transMoves: transMoves(X;Y;moves) play-len: ||moves|| seq-len: ||s|| pi1: fst(t) seq-truncate: seq-truncate(s;n) strat2play: strat2play(g;n;s) sequence: sequence(T) play-item: moves[i] int_seg: {i..j-} lelt: i ≤ j < k coW-game: coW-game(a.B[a];w;w') sg-pos: Pos(g) squash: T true: True sg-init: InitialPos(g) sg-legal1: Legal1(x;y) pi2: snd(t) lt_int: i <j le: A ≤ B less_than': less_than'(a;b) copath-length: copath-length(p) copath-nil: () let: let seq-add: seq-add(s;x) seq-nil: seq-nil() bnot: ¬bb assert: b seq-item: s[i] cand: c∧ B sg-legal2: Legal2(x;y) coWtransInvariant: coWtransInvariant(x.B[x];w1;w2;w3;k;X;Y;a;b;moves) label: ...$L... t copath: copath(a.B[a];w) copathAgree: copathAgree(a.B[a];w;x;y) play-truncate: play-truncate(f;m) coW-trans: coW-trans(X; Y) rev_uimplies: rev_uimplies(P;Q) nequal: a ≠ b ∈  nat_plus: + coW-pos-lens: coW-pos-lens(p;i;j)
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than win2strat_wf coW-game_wf decidable__le intformnot_wf int_formula_prop_not_lemma istype-le subtract-1-ge-0 istype-nat coW_wf istype-universe eq_int_wf equal-wf-base bool_wf int_subtype_base assert_wf bnot_wf not_wf istype-assert intformeq_wf int_formula_prop_eq_lemma win2strat_subtype strat2play_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma play-len_wf uiff_transitivity eqtt_to_assert assert_of_eq_int iff_transitivity iff_weakening_uiff eqff_to_assert assert_of_bnot bool_cases subtype_base_sq bool_subtype_base mul-distributes add-associates mul-commutes add-swap add-commutes zero-add decidable__equal_int itermAdd_wf itermMultiply_wf int_term_value_add_lemma int_term_value_mul_lemma copath_length_nil_lemma play-item_wf decidable__lt strat2play-invariant-1 sg-legal1_wf squash_wf true_wf sg-pos_wf simple-game_wf subtype_rel_self iff_weakening_equal equal_wf nat_wf set_subtype_base le_wf istype-false copath-length_wf lt_int_wf assert_of_lt_int int_seg_properties bool_cases_sqequal assert-bnot less_than_wf copath-nil_wf int_seg_wf seq-len_wf seq-item_wf sg-init_wf copathAgree-nil sg-legal2_wf copath_wf coWtransInvariant_wf pi1_wf pi2_wf subtype_rel_wf add_functionality_wrt_eq strat2play_subtype le-add-cancel le_antisymmetry_iff mul-associates equal-wf-T-base mul_preserves_le le-add-cancel2 add-zero less-iff-le le-add-cancel-alt add_functionality_wrt_le minus-one-mul-top minus-minus minus-add minus-one-mul condition-implies-le not-le-2 false_wf play-truncate_wf less_than_transitivity1 le_weakening2 strat2play_subtype_le not-lt-2 add-mul-special zero-mul lelt_wf seq-len-truncate sequence_wf seq-truncate_wf add-is-int-iff subtract-add-cancel bfalse_wf not-equal-2 eq_int_eq_false win2strat-properties seq-truncate-item le_reflexive coW-play-invariant mod2-2n mod2-2n-plus-1 strat2play-invariant and_wf or_wf less_than_irreflexivity le_int_wf assert_functionality_wrt_uiff bnot_of_lt_int assert_of_le_int copathAgree_wf strat2play-add add-subtract-cancel mul-distributes-right copathAgree_refl istype_wf subtype_rel_set seq-add_wf seq-add-len strat2play-longer le_weakening coW-pos-lens_wf intformor_wf int_formula_prop_or_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination Error :lambdaFormation_alt,  natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality dependent_functionElimination Error :isect_memberEquality_alt,  voidElimination independent_pairFormation Error :universeIsType,  axiomEquality equalityTransitivity equalitySymmetry Error :isectIsTypeImplies,  Error :inhabitedIsType,  Error :functionIsTypeImplies,  applyEquality Error :dependent_set_memberEquality_alt,  unionElimination because_Cache instantiate cumulativity Error :functionIsType,  universeEquality baseApply closedConclusion baseClosed intEquality Error :equalityIstype,  sqequalBase dependentIntersectionElimination dependentIntersection_memberEquality functionExtensionality setEquality equalityElimination productElimination multiplyEquality Error :setIsType,  Error :productIsType,  addEquality imageElimination imageMemberEquality hyp_replacement applyLambdaEquality independent_pairEquality Error :dependent_pairEquality_alt,  promote_hyp Error :inlFormation_alt,  dependentIntersectionEqElimination voidEquality Error :inrFormation_alt,  Error :equalityIsType4,  minusEquality Error :equalityIsType1,  dependent_set_memberEquality lambdaFormation lambdaEquality isect_memberEquality productEquality Error :unionIsType,  Error :equalityIsType2,  unionEquality Error :equalityIsType3,  pointwiseFunctionality

Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[w1,w2,w3:coW(A;a.B[a])].  \mforall{}[n:\mBbbN{}].
\mforall{}[X:win2strat(coW-game(a.B[a];w1;w2);n)].  \mforall{}[Y:win2strat(coW-game(a.B[a];w2;w3);n)].
    (coW-trans(X;  Y)  \mmember{}  win2strat(coW-game(a.B[a];w1;w3);n))



Date html generated: 2019_06_20-PM-01_10_53
Last ObjectModification: 2019_01_02-PM-04_22_25

Theory : co-recursion-2


Home Index