Nuprl Lemma : copath-nil_wf
∀[A:𝕌']. ∀[B:A ⟶ Type]. ∀[w:coW(A;a.B[a])].  (() ∈ copath(a.B[a];w))
Proof
Definitions occuring in Statement : 
copath-nil: ()
, 
copath: copath(a.B[a];w)
, 
coW: coW(A;a.B[a])
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
copath-nil: ()
, 
copath: copath(a.B[a];w)
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
prop: ℙ
, 
false: False
, 
subtype_rel: A ⊆r B
, 
unit: Unit
, 
coPath: coPath(a.B[a];w;n)
, 
eq_int: (i =z j)
, 
subtract: n - m
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
decidable__le, 
full-omega-unsat, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
istype-le, 
it_wf, 
coPath_wf, 
coW_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
Error :dependent_pairEquality_alt, 
Error :dependent_set_memberEquality_alt, 
natural_numberEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesis, 
unionElimination, 
isectElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
Error :dependent_pairFormation_alt, 
Error :lambdaEquality_alt, 
Error :isect_memberEquality_alt, 
voidElimination, 
Error :universeIsType, 
hypothesisEquality, 
applyEquality, 
voidEquality, 
Error :equalityIstype, 
baseClosed, 
because_Cache, 
sqequalBase, 
equalitySymmetry, 
axiomEquality, 
equalityTransitivity, 
instantiate, 
cumulativity, 
Error :isectIsTypeImplies, 
Error :inhabitedIsType, 
Error :functionIsType, 
universeEquality
Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[w:coW(A;a.B[a])].    (()  \mmember{}  copath(a.B[a];w))
Date html generated:
2019_06_20-PM-00_56_36
Last ObjectModification:
2019_01_16-PM-02_57_10
Theory : co-recursion-2
Home
Index