Nuprl Lemma : copath-nil_wf

[A:𝕌']. ∀[B:A ⟶ Type]. ∀[w:coW(A;a.B[a])].  (() ∈ copath(a.B[a];w))


Proof




Definitions occuring in Statement :  copath-nil: () copath: copath(a.B[a];w) coW: coW(A;a.B[a]) uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T copath-nil: () copath: copath(a.B[a];w) nat: all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top prop: false: False subtype_rel: A ⊆B unit: Unit coPath: coPath(a.B[a];w;n) eq_int: (i =z j) subtract: m ifthenelse: if then else fi  btrue: tt so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  decidable__le full-omega-unsat intformnot_wf intformle_wf itermConstant_wf istype-int int_formula_prop_not_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_wf istype-le it_wf coPath_wf coW_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule Error :dependent_pairEquality_alt,  Error :dependent_set_memberEquality_alt,  natural_numberEquality extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesis unionElimination isectElimination independent_isectElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  Error :isect_memberEquality_alt,  voidElimination Error :universeIsType,  hypothesisEquality applyEquality voidEquality Error :equalityIstype,  baseClosed because_Cache sqequalBase equalitySymmetry axiomEquality equalityTransitivity instantiate cumulativity Error :isectIsTypeImplies,  Error :inhabitedIsType,  Error :functionIsType,  universeEquality

Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[w:coW(A;a.B[a])].    (()  \mmember{}  copath(a.B[a];w))



Date html generated: 2019_06_20-PM-00_56_36
Last ObjectModification: 2019_01_16-PM-02_57_10

Theory : co-recursion-2


Home Index