Nuprl Lemma : copathAgree_wf
∀[A:𝕌']. ∀[B:A ⟶ Type]. ∀[w:coW(A;a.B[a])]. ∀[x,y:copath(a.B[a];w)].  (copathAgree(a.B[a];w;x;y) ∈ ℙ)
Proof
Definitions occuring in Statement : 
copathAgree: copathAgree(a.B[a];w;x;y)
, 
copath: copath(a.B[a];w)
, 
coW: coW(A;a.B[a])
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
copathAgree: copathAgree(a.B[a];w;x;y)
, 
copath: copath(a.B[a];w)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
nat: ℕ
, 
less_than: a < b
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
true: True
, 
squash: ↓T
, 
top: Top
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
guard: {T}
, 
uiff: uiff(P;Q)
, 
gt: i > j
Lemmas referenced : 
coPath_wf, 
top_wf, 
less_than_wf, 
coPathAgree_wf, 
coPath_subtype, 
le_weakening2, 
not-gt-2, 
copath_wf, 
coW_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
spreadEquality, 
sqequalHypSubstitution, 
productElimination, 
thin, 
dependent_pairEquality, 
hypothesisEquality, 
extract_by_obid, 
isectElimination, 
lambdaEquality, 
applyEquality, 
hypothesis, 
setElimination, 
rename, 
lessCases, 
independent_pairFormation, 
baseClosed, 
natural_numberEquality, 
equalityTransitivity, 
equalitySymmetry, 
imageMemberEquality, 
axiomSqEquality, 
isect_memberEquality, 
because_Cache, 
voidElimination, 
voidEquality, 
lambdaFormation, 
imageElimination, 
independent_functionElimination, 
independent_isectElimination, 
dependent_functionElimination, 
axiomEquality, 
instantiate, 
cumulativity, 
functionEquality, 
universeEquality
Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[w:coW(A;a.B[a])].  \mforall{}[x,y:copath(a.B[a];w)].
    (copathAgree(a.B[a];w;x;y)  \mmember{}  \mBbbP{})
Date html generated:
2019_06_20-PM-00_56_48
Last ObjectModification:
2019_01_02-PM-01_33_51
Theory : co-recursion-2
Home
Index