Nuprl Lemma : copathAgree_wf

[A:𝕌']. ∀[B:A ⟶ Type]. ∀[w:coW(A;a.B[a])]. ∀[x,y:copath(a.B[a];w)].  (copathAgree(a.B[a];w;x;y) ∈ ℙ)


Proof




Definitions occuring in Statement :  copathAgree: copathAgree(a.B[a];w;x;y) copath: copath(a.B[a];w) coW: coW(A;a.B[a]) uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T copathAgree: copathAgree(a.B[a];w;x;y) copath: copath(a.B[a];w) so_lambda: λ2x.t[x] so_apply: x[s] nat: less_than: a < b and: P ∧ Q less_than': less_than'(a;b) true: True squash: T top: Top not: ¬A implies:  Q false: False prop: subtype_rel: A ⊆B uimplies: supposing a all: x:A. B[x] guard: {T} uiff: uiff(P;Q) gt: i > j
Lemmas referenced :  coPath_wf top_wf less_than_wf coPathAgree_wf coPath_subtype le_weakening2 not-gt-2 copath_wf coW_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule spreadEquality sqequalHypSubstitution productElimination thin dependent_pairEquality hypothesisEquality extract_by_obid isectElimination lambdaEquality applyEquality hypothesis setElimination rename lessCases independent_pairFormation baseClosed natural_numberEquality equalityTransitivity equalitySymmetry imageMemberEquality axiomSqEquality isect_memberEquality because_Cache voidElimination voidEquality lambdaFormation imageElimination independent_functionElimination independent_isectElimination dependent_functionElimination axiomEquality instantiate cumulativity functionEquality universeEquality

Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[w:coW(A;a.B[a])].  \mforall{}[x,y:copath(a.B[a];w)].
    (copathAgree(a.B[a];w;x;y)  \mmember{}  \mBbbP{})



Date html generated: 2019_06_20-PM-00_56_48
Last ObjectModification: 2019_01_02-PM-01_33_51

Theory : co-recursion-2


Home Index