Step
*
1
1
of Lemma
sq-stable-coW-game-legal2
1. [A] : 𝕌'
2. [B] : A ⟶ Type
3. [w] : coW(A;a.B[a])
4. [w'] : coW(A;a.B[a])
5. p1 : copath(a.B[a];w)@i
6. p2 : copath(a.B[a];w')@i
7. q1 : copath(a.B[a];w)@i
8. q2 : copath(a.B[a];w')@i
9. ↓(((copath-length(q1) = (copath-length(p1) + 1) ∈ ℤ) ∧ copathAgree(a.B[a];w;p1;q1) ∧ (p2 = q2 ∈ copath(a.B[a];w')))
∨ ((p1 = q1 ∈ copath(a.B[a];w)) ∧ (copath-length(q2) = (copath-length(p2) + 1) ∈ ℤ) ∧ copathAgree(a.B[a];w';p2;q2)))
∧ (copath-length(q1) = copath-length(q2) ∈ ℤ)
⊢ ((copath-length(q1) = (copath-length(p1) + 1) ∈ ℤ) ∧ copathAgree(a.B[a];w;p1;q1) ∧ (p2 = q2 ∈ copath(a.B[a];w')))
∨ ((p1 = q1 ∈ copath(a.B[a];w)) ∧ (copath-length(q2) = (copath-length(p2) + 1) ∈ ℤ) ∧ copathAgree(a.B[a];w';p2;q2))
BY
{ (Decide ⌜copath-length(q1) = (copath-length(p1) + 1) ∈ ℤ⌝⋅ THENA Auto) }
1
1. [A] : 𝕌'
2. [B] : A ⟶ Type
3. [w] : coW(A;a.B[a])
4. [w'] : coW(A;a.B[a])
5. p1 : copath(a.B[a];w)@i
6. p2 : copath(a.B[a];w')@i
7. q1 : copath(a.B[a];w)@i
8. q2 : copath(a.B[a];w')@i
9. ↓(((copath-length(q1) = (copath-length(p1) + 1) ∈ ℤ) ∧ copathAgree(a.B[a];w;p1;q1) ∧ (p2 = q2 ∈ copath(a.B[a];w')))
∨ ((p1 = q1 ∈ copath(a.B[a];w)) ∧ (copath-length(q2) = (copath-length(p2) + 1) ∈ ℤ) ∧ copathAgree(a.B[a];w';p2;q2)))
∧ (copath-length(q1) = copath-length(q2) ∈ ℤ)
10. copath-length(q1) = (copath-length(p1) + 1) ∈ ℤ
⊢ ((copath-length(q1) = (copath-length(p1) + 1) ∈ ℤ) ∧ copathAgree(a.B[a];w;p1;q1) ∧ (p2 = q2 ∈ copath(a.B[a];w')))
∨ ((p1 = q1 ∈ copath(a.B[a];w)) ∧ (copath-length(q2) = (copath-length(p2) + 1) ∈ ℤ) ∧ copathAgree(a.B[a];w';p2;q2))
2
1. [A] : 𝕌'
2. [B] : A ⟶ Type
3. [w] : coW(A;a.B[a])
4. [w'] : coW(A;a.B[a])
5. p1 : copath(a.B[a];w)@i
6. p2 : copath(a.B[a];w')@i
7. q1 : copath(a.B[a];w)@i
8. q2 : copath(a.B[a];w')@i
9. ↓(((copath-length(q1) = (copath-length(p1) + 1) ∈ ℤ) ∧ copathAgree(a.B[a];w;p1;q1) ∧ (p2 = q2 ∈ copath(a.B[a];w')))
∨ ((p1 = q1 ∈ copath(a.B[a];w)) ∧ (copath-length(q2) = (copath-length(p2) + 1) ∈ ℤ) ∧ copathAgree(a.B[a];w';p2;q2)))
∧ (copath-length(q1) = copath-length(q2) ∈ ℤ)
10. ¬(copath-length(q1) = (copath-length(p1) + 1) ∈ ℤ)
⊢ ((copath-length(q1) = (copath-length(p1) + 1) ∈ ℤ) ∧ copathAgree(a.B[a];w;p1;q1) ∧ (p2 = q2 ∈ copath(a.B[a];w')))
∨ ((p1 = q1 ∈ copath(a.B[a];w)) ∧ (copath-length(q2) = (copath-length(p2) + 1) ∈ ℤ) ∧ copathAgree(a.B[a];w';p2;q2))
Latex:
Latex:
1. [A] : \mBbbU{}'
2. [B] : A {}\mrightarrow{} Type
3. [w] : coW(A;a.B[a])
4. [w'] : coW(A;a.B[a])
5. p1 : copath(a.B[a];w)@i
6. p2 : copath(a.B[a];w')@i
7. q1 : copath(a.B[a];w)@i
8. q2 : copath(a.B[a];w')@i
9. \mdownarrow{}(((copath-length(q1) = (copath-length(p1) + 1)) \mwedge{} copathAgree(a.B[a];w;p1;q1) \mwedge{} (p2 = q2))
\mvee{} ((p1 = q1) \mwedge{} (copath-length(q2) = (copath-length(p2) + 1)) \mwedge{} copathAgree(a.B[a];w';p2;q2)))
\mwedge{} (copath-length(q1) = copath-length(q2))
\mvdash{} ((copath-length(q1) = (copath-length(p1) + 1)) \mwedge{} copathAgree(a.B[a];w;p1;q1) \mwedge{} (p2 = q2))
\mvee{} ((p1 = q1) \mwedge{} (copath-length(q2) = (copath-length(p2) + 1)) \mwedge{} copathAgree(a.B[a];w';p2;q2))
By
Latex:
(Decide \mkleeneopen{}copath-length(q1) = (copath-length(p1) + 1)\mkleeneclose{}\mcdot{} THENA Auto)
Home
Index