Step
*
1
1
1
1
3
of Lemma
W-wfdd
.....eq aux.....
1. A : 𝕌'
2. B : A ⟶ Type
3. w : coW(A;a.B[a])
4. p : n:ℕ ⟶ copath(a.B[a];w)
5. ∀i:ℕ
((copath-length(p i) = i ∈ ℤ)
⇒ (copath-length(p (i + 1)) = (i + 1) ∈ ℤ)
⇒ copathAgree(a.B[a];w;p i;p (i + 1)))
6. copath-length(p 0) = 0 ∈ ℤ
7. i : ℕ
8. p1 : Unit
⊢ w:pco-W p1 × (B[fst(w)]?) ∈ 𝕌'
BY
{ ((D -1 THEN Fold `it` 0 THEN Fold `coW` 0) THEN Auto THEN coWD (-1) THEN Auto) }
Latex:
Latex:
.....eq aux.....
1. A : \mBbbU{}'
2. B : A {}\mrightarrow{} Type
3. w : coW(A;a.B[a])
4. p : n:\mBbbN{} {}\mrightarrow{} copath(a.B[a];w)
5. \mforall{}i:\mBbbN{}
((copath-length(p i) = i)
{}\mRightarrow{} (copath-length(p (i + 1)) = (i + 1))
{}\mRightarrow{} copathAgree(a.B[a];w;p i;p (i + 1)))
6. copath-length(p 0) = 0
7. i : \mBbbN{}
8. p1 : Unit
\mvdash{} w:pco-W p1 \mtimes{} (B[fst(w)]?) \mmember{} \mBbbU{}'
By
Latex:
((D -1 THEN Fold `it` 0 THEN Fold `coW` 0) THEN Auto THEN coWD (-1) THEN Auto)
Home
Index