Nuprl Lemma : W-wfdd

[A:𝕌']. ∀[B:A ⟶ Type]. ∀[w:W(A;a.B[a])].  coW-wfdd(a.B[a];w)


Proof




Definitions occuring in Statement :  coW-wfdd: coW-wfdd(a.B[a];w) W: W(A;a.B[a]) uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  isr: isr(x) pcw-pp-barred: Barred(pp) pcw-partial: pcw-partial(path;n) eq_int: (i =z j) coPath-at: coPath-at(n;w;p) copath-at: copath-at(w;p) copath-length: copath-length(p) copath: copath(a.B[a];w) so_apply: x[s1;s2;s3] so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] coW-item: coW-item(w;b) cand: c∧ B pcw-step-agree: StepAgree(s;p1;w) spreadn: spread3 pcw-steprel: StepRel(s1;s2) ext-eq: A ≡ B pi1: fst(t) coW-dom: coW-dom(a.B[a];w) pi2: snd(t) assert: b bnot: ¬bb guard: {T} sq_type: SQType(T) exists: x:A. B[x] bfalse: ff ifthenelse: if then else fi  band: p ∧b q btrue: tt it: unit: Unit bool: 𝔹 exposed-bfalse: exposed-bfalse pcw-step: pcw-step(P;p.A[p];p,a.B[p; a];p,a,b.C[p; a; b]) pcw-path: Path true: True less_than': less_than'(a;b) le: A ≤ B top: Top subtract: m uimplies: supposing a uiff: uiff(P;Q) false: False rev_implies:  Q not: ¬A and: P ∧ Q iff: ⇐⇒ Q or: P ∨ Q decidable: Dec(P) nat: prop: squash: T all: x:A. B[x] coW-wfdd: coW-wfdd(a.B[a];w) coW: coW(A;a.B[a]) param-W: pW W: W(A;a.B[a]) implies:  Q sq_stable: SqStable(P) so_apply: x[s] so_lambda: λ2x.t[x] subtype_rel: A ⊆B member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  not_wf iff_wf assert_of_band iff_weakening_uiff assert_wf iff_transitivity member_wf btrue_wf band_wf iff_imp_equal_bool subtract-add-cancel minus-minus less-iff-le subtract_wf int_subtype_base equal-wf-T-base pcw-steprel_wf subtype_rel-equal coW-item_wf iff_weakening_equal subtype_rel_self subtype_rel_weakening coW-ext unit_wf2 copathAgree-last le-add-cancel2 not-equal-2 pi1_wf true_wf squash_wf coW-dom_wf coW_wf le_antisymmetry_iff not-lt-2 decidable__lt copath-last_wf neg_assert_of_eq_int assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal eqff_to_assert assert_of_eq_int eqtt_to_assert bool_wf eq_int_wf copath-at_wf it_wf decidable__int_equal W_wf copathAgree_wf le_wf le-add-cancel add-zero add_functionality_wrt_le add-commutes add-swap add-associates minus-one-mul-top zero-add minus-one-mul minus-add condition-implies-le sq_stable__le not-le-2 false_wf decidable__le copath-length_wf equal_wf all_wf copath_wf nat_wf set_wf W-subtype-coW sq_stable__coW-wfdd
Rules used in proof :  impliesFunctionality addLevel unionEquality inrEquality hypothesis_subsumption applyLambdaEquality hyp_replacement productEquality inlEquality promote_hyp dependent_pairFormation equalitySymmetry equalityTransitivity equalityElimination dependent_pairEquality universeEquality instantiate minusEquality voidEquality isect_memberEquality independent_isectElimination productElimination voidElimination independent_pairFormation unionElimination dependent_functionElimination natural_numberEquality addEquality dependent_set_memberEquality intEquality because_Cache functionExtensionality cumulativity functionEquality baseClosed imageMemberEquality imageElimination lambdaFormation rename setElimination independent_functionElimination lambdaEquality sqequalRule applyEquality hypothesisEquality thin isectElimination sqequalHypSubstitution hypothesis isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution extract_by_obid introduction cut

Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[w:W(A;a.B[a])].    coW-wfdd(a.B[a];w)



Date html generated: 2018_07_25-PM-01_42_13
Last ObjectModification: 2018_07_24-PM-00_02_46

Theory : co-recursion


Home Index