Nuprl Lemma : W-subtype-coW

[A:𝕌']. ∀[B:A ⟶ Type].  (W(A;a.B[a]) ⊆coW(A;a.B[a]))


Proof




Definitions occuring in Statement :  coW: coW(A;a.B[a]) W: W(A;a.B[a]) subtype_rel: A ⊆B uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  coW: coW(A;a.B[a]) so_apply: x[s] so_lambda: λ2x.t[x] param-W: pW W: W(A;a.B[a]) subtype_rel: A ⊆B member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  W_wf
Rules used in proof :  because_Cache isect_memberEquality universeEquality functionEquality axiomEquality applyEquality cumulativity sqequalRule hypothesisEquality isectElimination extract_by_obid instantiate hypothesis rename thin setElimination sqequalHypSubstitution lambdaEquality cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].    (W(A;a.B[a])  \msubseteq{}r  coW(A;a.B[a]))



Date html generated: 2018_07_25-PM-01_37_12
Last ObjectModification: 2018_07_19-AM-09_49_32

Theory : co-recursion


Home Index