Step
*
2
1
of Lemma
Wleq-Wadd2
1. [A] : Type
2. [B] : A ⟶ Type
3. zero : A ⟶ 𝔹
4. ∀a:A. (¬↑(zero a)
⇐⇒ B[a])
5. a : A
6. ¬↑(zero a)
7. f : B[a] ⟶ W(A;a.B[a])
8. ∀b:B[a]. ∀w2,w1:W(A;a.B[a]). ((w2 ≤ (f b))
⇒ ((w1 + w2) ≤ (w1 + f b)))
9. a@0 : A
10. f@0 : B[a@0] ⟶ W(A;a.B[a])
11. ∀b:B[a@0]. ∀w1:W(A;a.B[a]). (((f@0 b) ≤ Wsup(a;f))
⇒ ((w1 + f@0 b) ≤ (w1 + Wsup(a;f))))
12. ↑(zero a@0)
13. w1 : W(A;a.B[a])
14. Wsup(a@0;f@0) ≤ Wsup(a;f)
15. w1 ≤ (w1 + Wsup(a;f))
⊢ w1 ≤ Wsup(a;λx.(w1 + f x))
BY
{ (RecUnfold `Wadd` (-1) THEN Unfold `Wsup` -1 THEN Reduce (-1) THEN Fold `Wsup` (-1) THEN SplitOnHypITE -1 THEN Auto)
⋅ }
Latex:
Latex:
1. [A] : Type
2. [B] : A {}\mrightarrow{} Type
3. zero : A {}\mrightarrow{} \mBbbB{}
4. \mforall{}a:A. (\mneg{}\muparrow{}(zero a) \mLeftarrow{}{}\mRightarrow{} B[a])
5. a : A
6. \mneg{}\muparrow{}(zero a)
7. f : B[a] {}\mrightarrow{} W(A;a.B[a])
8. \mforall{}b:B[a]. \mforall{}w2,w1:W(A;a.B[a]). ((w2 \mleq{} (f b)) {}\mRightarrow{} ((w1 + w2) \mleq{} (w1 + f b)))
9. a@0 : A
10. f@0 : B[a@0] {}\mrightarrow{} W(A;a.B[a])
11. \mforall{}b:B[a@0]. \mforall{}w1:W(A;a.B[a]). (((f@0 b) \mleq{} Wsup(a;f)) {}\mRightarrow{} ((w1 + f@0 b) \mleq{} (w1 + Wsup(a;f))))
12. \muparrow{}(zero a@0)
13. w1 : W(A;a.B[a])
14. Wsup(a@0;f@0) \mleq{} Wsup(a;f)
15. w1 \mleq{} (w1 + Wsup(a;f))
\mvdash{} w1 \mleq{} Wsup(a;\mlambda{}x.(w1 + f x))
By
Latex:
(RecUnfold `Wadd` (-1)
THEN Unfold `Wsup` -1
THEN Reduce (-1)
THEN Fold `Wsup` (-1)
THEN SplitOnHypITE -1
THEN Auto)\mcdot{}
Home
Index