Step
*
of Lemma
Wzero-unique
∀[A:Type]. ∀[B:A ⟶ Type]. ∀[zero:A ⟶ 𝔹].
∀[z1,z2:W(A;a.B[a])]. z1 = z2 ∈ W(A;a.B[a]) supposing isZero(z1) ∧ isZero(z2)
supposing (∀a1,a2:A. ((↑(zero a1))
⇒ (↑(zero a2))
⇒ (a1 = a2 ∈ A))) ∧ (∀a:A. ((¬B[a])
⇒ (↑(zero a))))
BY
{ (Auto
THEN RepeatFor 4 (MoveToConcl (-1))
THEN RepeatFor 2 (UseWInductionLemma)
THEN RepUR ``Wzero Wsup`` 0
THEN Auto
THEN Fold `Wsup` 0
THEN EqCD
THEN Auto
THEN Ext
THEN Auto) }
Latex:
Latex:
\mforall{}[A:Type]. \mforall{}[B:A {}\mrightarrow{} Type]. \mforall{}[zero:A {}\mrightarrow{} \mBbbB{}].
\mforall{}[z1,z2:W(A;a.B[a])]. z1 = z2 supposing isZero(z1) \mwedge{} isZero(z2)
supposing (\mforall{}a1,a2:A. ((\muparrow{}(zero a1)) {}\mRightarrow{} (\muparrow{}(zero a2)) {}\mRightarrow{} (a1 = a2)))
\mwedge{} (\mforall{}a:A. ((\mneg{}B[a]) {}\mRightarrow{} (\muparrow{}(zero a))))
By
Latex:
(Auto
THEN RepeatFor 4 (MoveToConcl (-1))
THEN RepeatFor 2 (UseWInductionLemma)
THEN RepUR ``Wzero Wsup`` 0
THEN Auto
THEN Fold `Wsup` 0
THEN EqCD
THEN Auto
THEN Ext
THEN Auto)
Home
Index