Nuprl Lemma : Wzero-unique

[A:Type]. ∀[B:A ⟶ Type]. ∀[zero:A ⟶ 𝔹].
  ∀[z1,z2:W(A;a.B[a])].  z1 z2 ∈ W(A;a.B[a]) supposing isZero(z1) ∧ isZero(z2) 
  supposing (∀a1,a2:A.  ((↑(zero a1))  (↑(zero a2))  (a1 a2 ∈ A))) ∧ (∀a:A. ((¬B[a])  (↑(zero a))))


Proof




Definitions occuring in Statement :  Wzero: isZero(w) W: W(A;a.B[a]) assert: b bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q prop: all: x:A. B[x] Wsup: Wsup(a;b) Wzero: isZero(w) pi1: fst(t) squash: T not: ¬A false: False true: True subtype_rel: A ⊆B guard: {T}
Lemmas referenced :  W-induction all_wf W_wf Wzero_wf equal_wf Wsup_wf squash_wf true_wf not_wf assert_wf bool_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin extract_by_obid isectElimination hypothesisEquality sqequalRule lambdaEquality applyEquality functionExtensionality cumulativity because_Cache hypothesis functionEquality independent_functionElimination lambdaFormation imageElimination equalityTransitivity equalitySymmetry voidElimination natural_numberEquality imageMemberEquality baseClosed dependent_functionElimination productEquality isect_memberEquality axiomEquality universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[zero:A  {}\mrightarrow{}  \mBbbB{}].
    \mforall{}[z1,z2:W(A;a.B[a])].    z1  =  z2  supposing  isZero(z1)  \mwedge{}  isZero(z2) 
    supposing  (\mforall{}a1,a2:A.    ((\muparrow{}(zero  a1))  {}\mRightarrow{}  (\muparrow{}(zero  a2))  {}\mRightarrow{}  (a1  =  a2)))
    \mwedge{}  (\mforall{}a:A.  ((\mneg{}B[a])  {}\mRightarrow{}  (\muparrow{}(zero  a))))



Date html generated: 2017_04_14-AM-07_44_43
Last ObjectModification: 2017_02_27-PM-03_15_45

Theory : co-recursion


Home Index