Nuprl Lemma : Wzero_wf
∀[A:Type]. ∀[B:A ⟶ Type]. ∀[w:W(A;a.B[a])].  (isZero(w) ∈ ℙ)
Proof
Definitions occuring in Statement : 
Wzero: isZero(w), 
W: W(A;a.B[a]), 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s], 
member: t ∈ T, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
Wzero: isZero(w), 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
ext-eq: A ≡ B, 
and: P ∧ Q, 
subtype_rel: A ⊆r B
Lemmas referenced : 
not_wf, 
W-ext, 
pi1_wf, 
W_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
applyEquality, 
hypothesisEquality, 
lambdaEquality, 
promote_hyp, 
productElimination, 
hypothesis_subsumption, 
hypothesis, 
functionEquality, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
cumulativity, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[w:W(A;a.B[a])].    (isZero(w)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_14-AM-06_16_35
Last ObjectModification:
2015_12_26-PM-00_04_20
Theory : co-recursion
Home
Index