Nuprl Lemma : coPathAgree0_lemma
∀q,p,w,B:Top.  (coPathAgree(a.B[a];0;w;p;q) ~ True)
Proof
Definitions occuring in Statement : 
coPathAgree: coPathAgree(a.B[a];n;w;p;q)
, 
top: Top
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
true: True
, 
natural_number: $n
, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
coPathAgree: coPathAgree(a.B[a];n;w;p;q)
, 
eq_int: (i =z j)
, 
subtract: n - m
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesis, 
introduction, 
extract_by_obid, 
sqequalRule
Latex:
\mforall{}q,p,w,B:Top.    (coPathAgree(a.B[a];0;w;p;q)  \msim{}  True)
Date html generated:
2018_07_25-PM-01_38_05
Last ObjectModification:
2018_06_13-PM-05_45_49
Theory : co-recursion
Home
Index