Nuprl Lemma : coPathAgree0_lemma

q,p,w,B:Top.  (coPathAgree(a.B[a];0;w;p;q) True)


Proof




Definitions occuring in Statement :  coPathAgree: coPathAgree(a.B[a];n;w;p;q) top: Top so_apply: x[s] all: x:A. B[x] true: True natural_number: $n sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T coPathAgree: coPathAgree(a.B[a];n;w;p;q) eq_int: (i =z j) subtract: m ifthenelse: if then else fi  btrue: tt
Lemmas referenced :  top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis introduction extract_by_obid sqequalRule

Latex:
\mforall{}q,p,w,B:Top.    (coPathAgree(a.B[a];0;w;p;q)  \msim{}  True)



Date html generated: 2018_07_25-PM-01_38_05
Last ObjectModification: 2018_06_13-PM-05_45_49

Theory : co-recursion


Home Index