Step
*
of Lemma
copathAgree-last
∀[A:𝕌']. ∀[B:A ⟶ Type]. ∀[w:coW(A;a.B[a])]. ∀[p,q:copath(a.B[a];w)].
(((fst(copath-last(w;q))) = copath-at(w;p) ∈ coW(A;a.B[a]))
∧ (copath-at(w;q) = coW-item(copath-at(w;p);snd(copath-last(w;q))) ∈ coW(A;a.B[a]))) supposing
((copath-length(q) = (copath-length(p) + 1) ∈ ℤ) and
copathAgree(a.B[a];w;p;q))
BY
{ (RepeatFor 2 (Intro)
THEN (Assert ⌜∀n:ℕ
∀[w:coW(A;a.B[a])]. ∀[p,q:copath(a.B[a];w)].
(((fst(copath-last(w;q))) = copath-at(w;p) ∈ coW(A;a.B[a]))
∧ (copath-at(w;q) = coW-item(copath-at(w;p);snd(copath-last(w;q))) ∈ coW(A;a.B[a]))) supposing
((copath-length(q) = (copath-length(p) + 1) ∈ ℤ) and
copathAgree(a.B[a];w;p;q) and
(copath-length(q) ≤ n))⌝⋅
THENM (Auto THEN D 3 With ⌜copath-length(q)⌝ THEN Auto)
)
) }
1
.....assertion.....
1. [A] : 𝕌'
2. [B] : A ⟶ Type
⊢ ∀n:ℕ
∀[w:coW(A;a.B[a])]. ∀[p,q:copath(a.B[a];w)].
(((fst(copath-last(w;q))) = copath-at(w;p) ∈ coW(A;a.B[a]))
∧ (copath-at(w;q) = coW-item(copath-at(w;p);snd(copath-last(w;q))) ∈ coW(A;a.B[a]))) supposing
((copath-length(q) = (copath-length(p) + 1) ∈ ℤ) and
copathAgree(a.B[a];w;p;q) and
(copath-length(q) ≤ n))
Latex:
Latex:
\mforall{}[A:\mBbbU{}']. \mforall{}[B:A {}\mrightarrow{} Type]. \mforall{}[w:coW(A;a.B[a])]. \mforall{}[p,q:copath(a.B[a];w)].
(((fst(copath-last(w;q))) = copath-at(w;p))
\mwedge{} (copath-at(w;q) = coW-item(copath-at(w;p);snd(copath-last(w;q))))) supposing
((copath-length(q) = (copath-length(p) + 1)) and
copathAgree(a.B[a];w;p;q))
By
Latex:
(RepeatFor 2 (Intro)
THEN (Assert \mkleeneopen{}\mforall{}n:\mBbbN{}
\mforall{}[w:coW(A;a.B[a])]. \mforall{}[p,q:copath(a.B[a];w)].
(((fst(copath-last(w;q))) = copath-at(w;p))
\mwedge{} (copath-at(w;q)
= coW-item(copath-at(w;p);snd(copath-last(w;q))))) supposing
((copath-length(q) = (copath-length(p) + 1)) and
copathAgree(a.B[a];w;p;q) and
(copath-length(q) \mleq{} n))\mkleeneclose{}\mcdot{}
THENM (Auto THEN D 3 With \mkleeneopen{}copath-length(q)\mkleeneclose{} THEN Auto)
)
)
Home
Index