Step
*
1
of Lemma
copathAgree-last
.....assertion.....
1. [A] : 𝕌'
2. [B] : A ⟶ Type
⊢ ∀n:ℕ
∀[w:coW(A;a.B[a])]. ∀[p,q:copath(a.B[a];w)].
(((fst(copath-last(w;q))) = copath-at(w;p) ∈ coW(A;a.B[a]))
∧ (copath-at(w;q) = coW-item(copath-at(w;p);snd(copath-last(w;q))) ∈ coW(A;a.B[a]))) supposing
((copath-length(q) = (copath-length(p) + 1) ∈ ℤ) and
copathAgree(a.B[a];w;p;q) and
(copath-length(q) ≤ n))
BY
{ (InductionOnNat THEN RepeatFor 6 (Intro)) }
1
1. A : 𝕌'
2. B : A ⟶ Type
3. n : ℤ
4. [w] : coW(A;a.B[a])
5. [p] : copath(a.B[a];w)
6. [q] : copath(a.B[a];w)
7. [%] : copath-length(q) ≤ 0
8. [%1] : copathAgree(a.B[a];w;p;q)
9. [%2] : copath-length(q) = (copath-length(p) + 1) ∈ ℤ
⊢ ((fst(copath-last(w;q))) = copath-at(w;p) ∈ coW(A;a.B[a]))
∧ (copath-at(w;q) = coW-item(copath-at(w;p);snd(copath-last(w;q))) ∈ coW(A;a.B[a]))
2
1. A : 𝕌'
2. B : A ⟶ Type
3. n : ℤ
4. 0 < n
5. ∀[w:coW(A;a.B[a])]. ∀[p,q:copath(a.B[a];w)].
(((fst(copath-last(w;q))) = copath-at(w;p) ∈ coW(A;a.B[a]))
∧ (copath-at(w;q) = coW-item(copath-at(w;p);snd(copath-last(w;q))) ∈ coW(A;a.B[a]))) supposing
((copath-length(q) = (copath-length(p) + 1) ∈ ℤ) and
copathAgree(a.B[a];w;p;q) and
(copath-length(q) ≤ (n - 1)))
6. [w] : coW(A;a.B[a])
7. [p] : copath(a.B[a];w)
8. [q] : copath(a.B[a];w)
9. [%2] : copath-length(q) ≤ n
10. [%3] : copathAgree(a.B[a];w;p;q)
11. [%4] : copath-length(q) = (copath-length(p) + 1) ∈ ℤ
⊢ ((fst(copath-last(w;q))) = copath-at(w;p) ∈ coW(A;a.B[a]))
∧ (copath-at(w;q) = coW-item(copath-at(w;p);snd(copath-last(w;q))) ∈ coW(A;a.B[a]))
Latex:
Latex:
.....assertion.....
1. [A] : \mBbbU{}'
2. [B] : A {}\mrightarrow{} Type
\mvdash{} \mforall{}n:\mBbbN{}
\mforall{}[w:coW(A;a.B[a])]. \mforall{}[p,q:copath(a.B[a];w)].
(((fst(copath-last(w;q))) = copath-at(w;p))
\mwedge{} (copath-at(w;q) = coW-item(copath-at(w;p);snd(copath-last(w;q))))) supposing
((copath-length(q) = (copath-length(p) + 1)) and
copathAgree(a.B[a];w;p;q) and
(copath-length(q) \mleq{} n))
By
Latex:
(InductionOnNat THEN RepeatFor 6 (Intro))
Home
Index