Step
*
1
2
1
1
of Lemma
evodd-enum-surjection
1. b : 𝔹
2. x : pw-evenodd() b
3. a : ℕ
4. a + 1 ≠ 0
5. evodd-enum(a) = <b, x> ∈ (b:𝔹 × (pw-evenodd() b))
⊢ let b,z = evodd-enum((a + 1) - 1) in <¬bb, evodd-succ(z)> = <¬bb, evodd-succ(x)> ∈ (b:𝔹 × (pw-evenodd() b))
BY
{ (Subst ⌜(a + 1) - 1 ~ a⌝ 0⋅ THEN Auto) }
1
1. b : 𝔹
2. x : pw-evenodd() b
3. a : ℕ
4. a + 1 ≠ 0
5. evodd-enum(a) = <b, x> ∈ (b:𝔹 × (pw-evenodd() b))
⊢ let b,z = evodd-enum(a) in <¬bb, evodd-succ(z)> = <¬bb, evodd-succ(x)> ∈ (b:𝔹 × (pw-evenodd() b))
Latex:
Latex:
1. b : \mBbbB{}
2. x : pw-evenodd() b
3. a : \mBbbN{}
4. a + 1 \mneq{} 0
5. evodd-enum(a) = <b, x>
\mvdash{} let b,z = evodd-enum((a + 1) - 1) in <\mneg{}\msubb{}b, evodd-succ(z)> = <\mneg{}\msubb{}b, evodd-succ(x)>
By
Latex:
(Subst \mkleeneopen{}(a + 1) - 1 \msim{} a\mkleeneclose{} 0\mcdot{} THEN Auto)
Home
Index