Nuprl Lemma : evodd-enum-surjection
Surj(ℕ;b:𝔹 × (pw-evenodd() b);λn.evodd-enum(n))
Proof
Definitions occuring in Statement : 
evodd-enum: evodd-enum(n)
, 
pw-evenodd: pw-evenodd()
, 
surject: Surj(A;B;f)
, 
nat: ℕ
, 
bool: 𝔹
, 
apply: f a
, 
lambda: λx.A[x]
, 
product: x:A × B[x]
Definitions unfolded in proof : 
surject: Surj(A;B;f)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x y.t[x; y]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
so_apply: x[s1;s2]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
evodd-enum: evodd-enum(n)
, 
primrec: primrec(n;b;c)
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
subtract: n - m
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
true: True
, 
guard: {T}
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
Lemmas referenced : 
bool_wf, 
pw-evenodd_wf, 
evodd-induction2-ext, 
exists_wf, 
nat_wf, 
equal_wf, 
evodd-enum_wf, 
false_wf, 
le_wf, 
btrue_wf, 
evodd-zero_wf, 
equal-wf-T-base, 
decidable__le, 
not-le-2, 
sq_stable__le, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-associates, 
add-swap, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
bnot_wf, 
evodd-succ_wf, 
subtype_rel-equal, 
squash_wf, 
true_wf, 
bnot_bnot_elim, 
iff_weakening_equal, 
primrec-unroll, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
le_antisymmetry_iff, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
add-subtract-cancel
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
productElimination, 
thin, 
sqequalRule, 
cut, 
sqequalHypSubstitution, 
dependent_functionElimination, 
hypothesisEquality, 
hypothesis, 
productEquality, 
introduction, 
extract_by_obid, 
applyEquality, 
isectElimination, 
lambdaEquality, 
dependent_pairEquality, 
independent_functionElimination, 
dependent_pairFormation, 
dependent_set_memberEquality, 
natural_numberEquality, 
independent_pairFormation, 
baseClosed, 
addEquality, 
setElimination, 
rename, 
unionElimination, 
voidElimination, 
independent_isectElimination, 
imageMemberEquality, 
imageElimination, 
isect_memberEquality, 
voidEquality, 
intEquality, 
because_Cache, 
minusEquality, 
instantiate, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
equalityElimination, 
promote_hyp, 
cumulativity, 
hyp_replacement, 
applyLambdaEquality
Latex:
Surj(\mBbbN{};b:\mBbbB{}  \mtimes{}  (pw-evenodd()  b);\mlambda{}n.evodd-enum(n))
Date html generated:
2017_04_14-AM-07_43_27
Last ObjectModification:
2017_02_27-PM-03_14_06
Theory : co-recursion
Home
Index