Nuprl Lemma : evodd-enum-surjection

Surj(ℕ;b:𝔹 × (pw-evenodd() b);λn.evodd-enum(n))


Proof




Definitions occuring in Statement :  evodd-enum: evodd-enum(n) pw-evenodd: pw-evenodd() surject: Surj(A;B;f) nat: bool: 𝔹 apply: a lambda: λx.A[x] product: x:A × B[x]
Definitions unfolded in proof :  surject: Surj(A;B;f) all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2y.t[x; y] so_lambda: λ2x.t[x] so_apply: x[s] so_apply: x[s1;s2] implies:  Q prop: exists: x:A. B[x] nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A evodd-enum: evodd-enum(n) primrec: primrec(n;b;c) decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) uimplies: supposing a sq_stable: SqStable(P) squash: T subtract: m subtype_rel: A ⊆B top: Top true: True guard: {T} bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b
Lemmas referenced :  bool_wf pw-evenodd_wf evodd-induction2-ext exists_wf nat_wf equal_wf evodd-enum_wf false_wf le_wf btrue_wf evodd-zero_wf equal-wf-T-base decidable__le not-le-2 sq_stable__le condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel bnot_wf evodd-succ_wf subtype_rel-equal squash_wf true_wf bnot_bnot_elim iff_weakening_equal primrec-unroll eq_int_wf eqtt_to_assert assert_of_eq_int le_antisymmetry_iff eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int add-subtract-cancel
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation productElimination thin sqequalRule cut sqequalHypSubstitution dependent_functionElimination hypothesisEquality hypothesis productEquality introduction extract_by_obid applyEquality isectElimination lambdaEquality dependent_pairEquality independent_functionElimination dependent_pairFormation dependent_set_memberEquality natural_numberEquality independent_pairFormation baseClosed addEquality setElimination rename unionElimination voidElimination independent_isectElimination imageMemberEquality imageElimination isect_memberEquality voidEquality intEquality because_Cache minusEquality instantiate equalityTransitivity equalitySymmetry universeEquality equalityElimination promote_hyp cumulativity hyp_replacement applyLambdaEquality

Latex:
Surj(\mBbbN{};b:\mBbbB{}  \mtimes{}  (pw-evenodd()  b);\mlambda{}n.evodd-enum(n))



Date html generated: 2017_04_14-AM-07_43_27
Last ObjectModification: 2017_02_27-PM-03_14_06

Theory : co-recursion


Home Index