Nuprl Lemma : evodd-enum-surjection
Surj(ℕ;b:𝔹 × (pw-evenodd() b);λn.evodd-enum(n))
Proof
Definitions occuring in Statement :
evodd-enum: evodd-enum(n)
,
pw-evenodd: pw-evenodd()
,
surject: Surj(A;B;f)
,
nat: ℕ
,
bool: 𝔹
,
apply: f a
,
lambda: λx.A[x]
,
product: x:A × B[x]
Definitions unfolded in proof :
surject: Surj(A;B;f)
,
all: ∀x:A. B[x]
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
,
so_lambda: λ2x y.t[x; y]
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
so_apply: x[s1;s2]
,
implies: P
⇒ Q
,
prop: ℙ
,
exists: ∃x:A. B[x]
,
nat: ℕ
,
le: A ≤ B
,
and: P ∧ Q
,
less_than': less_than'(a;b)
,
false: False
,
not: ¬A
,
evodd-enum: evodd-enum(n)
,
primrec: primrec(n;b;c)
,
decidable: Dec(P)
,
or: P ∨ Q
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
uiff: uiff(P;Q)
,
uimplies: b supposing a
,
sq_stable: SqStable(P)
,
squash: ↓T
,
subtract: n - m
,
subtype_rel: A ⊆r B
,
top: Top
,
true: True
,
guard: {T}
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
sq_type: SQType(T)
,
bnot: ¬bb
,
assert: ↑b
Lemmas referenced :
bool_wf,
pw-evenodd_wf,
evodd-induction2-ext,
exists_wf,
nat_wf,
equal_wf,
evodd-enum_wf,
false_wf,
le_wf,
btrue_wf,
evodd-zero_wf,
equal-wf-T-base,
decidable__le,
not-le-2,
sq_stable__le,
condition-implies-le,
minus-add,
minus-one-mul,
zero-add,
minus-one-mul-top,
add-associates,
add-swap,
add-commutes,
add_functionality_wrt_le,
add-zero,
le-add-cancel,
bnot_wf,
evodd-succ_wf,
subtype_rel-equal,
squash_wf,
true_wf,
bnot_bnot_elim,
iff_weakening_equal,
primrec-unroll,
eq_int_wf,
eqtt_to_assert,
assert_of_eq_int,
le_antisymmetry_iff,
eqff_to_assert,
bool_cases_sqequal,
subtype_base_sq,
bool_subtype_base,
assert-bnot,
neg_assert_of_eq_int,
add-subtract-cancel
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
productElimination,
thin,
sqequalRule,
cut,
sqequalHypSubstitution,
dependent_functionElimination,
hypothesisEquality,
hypothesis,
productEquality,
introduction,
extract_by_obid,
applyEquality,
isectElimination,
lambdaEquality,
dependent_pairEquality,
independent_functionElimination,
dependent_pairFormation,
dependent_set_memberEquality,
natural_numberEquality,
independent_pairFormation,
baseClosed,
addEquality,
setElimination,
rename,
unionElimination,
voidElimination,
independent_isectElimination,
imageMemberEquality,
imageElimination,
isect_memberEquality,
voidEquality,
intEquality,
because_Cache,
minusEquality,
instantiate,
equalityTransitivity,
equalitySymmetry,
universeEquality,
equalityElimination,
promote_hyp,
cumulativity,
hyp_replacement,
applyLambdaEquality
Latex:
Surj(\mBbbN{};b:\mBbbB{} \mtimes{} (pw-evenodd() b);\mlambda{}n.evodd-enum(n))
Date html generated:
2017_04_14-AM-07_43_27
Last ObjectModification:
2017_02_27-PM-03_14_06
Theory : co-recursion
Home
Index