Nuprl Lemma : evodd-zero_wf
evodd-zero() ∈ pw-evenodd() tt
Proof
Definitions occuring in Statement : 
evodd-zero: evodd-zero()
, 
pw-evenodd: pw-evenodd()
, 
btrue: tt
, 
member: t ∈ T
, 
apply: f a
Definitions unfolded in proof : 
pw-evenodd: pw-evenodd()
, 
evodd-zero: evodd-zero()
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
subtype_rel: A ⊆r B
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
Lemmas referenced : 
btrue_wf, 
bnot_wf, 
unit_wf2, 
equal-wf-T-base, 
bool_wf, 
pW-sup_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
sqequalRule, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
lambdaEquality, 
unionEquality, 
hypothesisEquality, 
baseClosed, 
because_Cache, 
unionElimination, 
voidEquality, 
inlEquality, 
axiomEquality, 
applyEquality, 
voidElimination
Latex:
evodd-zero()  \mmember{}  pw-evenodd()  tt
Date html generated:
2016_05_14-AM-06_14_39
Last ObjectModification:
2016_01_14-PM-08_03_45
Theory : co-recursion
Home
Index