Nuprl Lemma : evodd-zero_wf

evodd-zero() ∈ pw-evenodd() tt


Proof




Definitions occuring in Statement :  evodd-zero: evodd-zero() pw-evenodd: pw-evenodd() btrue: tt member: t ∈ T apply: a
Definitions unfolded in proof :  pw-evenodd: pw-evenodd() evodd-zero: evodd-zero() member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2x.t[x] prop: so_apply: x[s] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] subtype_rel: A ⊆B bnot: ¬bb ifthenelse: if then else fi  btrue: tt
Lemmas referenced :  btrue_wf bnot_wf unit_wf2 equal-wf-T-base bool_wf pW-sup_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity sqequalRule cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaEquality unionEquality hypothesisEquality baseClosed because_Cache unionElimination voidEquality inlEquality axiomEquality applyEquality voidElimination

Latex:
evodd-zero()  \mmember{}  pw-evenodd()  tt



Date html generated: 2016_05_14-AM-06_14_39
Last ObjectModification: 2016_01_14-PM-08_03_45

Theory : co-recursion


Home Index