Nuprl Lemma : evodd-induction2-ext
∀[Q:b:𝔹 ⟶ (pw-evenodd() b) ⟶ ℙ]
  (Q[tt;evodd-zero()]
  ⇒ (∀b:𝔹. ∀x:pw-evenodd() b.  (Q[b;x] ⇒ Q[¬bb;evodd-succ(x)]))
  ⇒ (∀b:𝔹. ∀n:pw-evenodd() b.  Q[b;n]))
Proof
Definitions occuring in Statement : 
evodd-succ: evodd-succ(n), 
evodd-zero: evodd-zero(), 
pw-evenodd: pw-evenodd(), 
bnot: ¬bb, 
btrue: tt, 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s1;s2], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
apply: f a, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
member: t ∈ T, 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
so_apply: x[s1;s2;s3], 
ifthenelse: if b then t else f fi , 
evodd-induction2, 
evodd-induction, 
param-W-induction, 
uall: ∀[x:A]. B[x], 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]), 
so_apply: x[s1;s2;s3;s4], 
top: Top, 
uimplies: b supposing a, 
strict4: strict4(F), 
and: P ∧ Q, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
has-value: (a)↓, 
prop: ℙ, 
guard: {T}, 
or: P ∨ Q, 
squash: ↓T, 
so_lambda: λ2x.t[x], 
so_apply: x[s]
Lemmas referenced : 
evodd-induction2, 
lifting-strict-decide, 
has-value_wf_base, 
base_wf, 
is-exception_wf, 
evodd-induction, 
param-W-induction
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
equalityTransitivity, 
equalitySymmetry, 
isectElimination, 
baseClosed, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_isectElimination, 
independent_pairFormation, 
lambdaFormation, 
callbyvalueApply, 
baseApply, 
closedConclusion, 
hypothesisEquality, 
applyExceptionCases, 
inrFormation, 
imageMemberEquality, 
imageElimination, 
inlFormation, 
because_Cache
Latex:
\mforall{}[Q:b:\mBbbB{}  {}\mrightarrow{}  (pw-evenodd()  b)  {}\mrightarrow{}  \mBbbP{}]
    (Q[tt;evodd-zero()]
    {}\mRightarrow{}  (\mforall{}b:\mBbbB{}.  \mforall{}x:pw-evenodd()  b.    (Q[b;x]  {}\mRightarrow{}  Q[\mneg{}\msubb{}b;evodd-succ(x)]))
    {}\mRightarrow{}  (\mforall{}b:\mBbbB{}.  \mforall{}n:pw-evenodd()  b.    Q[b;n]))
Date html generated:
2018_05_21-PM-00_05_32
Last ObjectModification:
2018_05_19-AM-07_00_31
Theory : co-recursion
Home
Index