Nuprl Lemma : evodd-induction2-ext

[Q:b:𝔹 ⟶ (pw-evenodd() b) ⟶ ℙ]
  (Q[tt;evodd-zero()]
   (∀b:𝔹. ∀x:pw-evenodd() b.  (Q[b;x]  Q[¬bb;evodd-succ(x)]))
   (∀b:𝔹. ∀n:pw-evenodd() b.  Q[b;n]))


Proof




Definitions occuring in Statement :  evodd-succ: evodd-succ(n) evodd-zero: evodd-zero() pw-evenodd: pw-evenodd() bnot: ¬bb btrue: tt bool: 𝔹 uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x]
Definitions unfolded in proof :  member: t ∈ T so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] ifthenelse: if then else fi  evodd-induction2 evodd-induction param-W-induction uall: [x:A]. B[x] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] top: Top uimplies: supposing a strict4: strict4(F) and: P ∧ Q all: x:A. B[x] implies:  Q has-value: (a)↓ prop: guard: {T} or: P ∨ Q squash: T so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  evodd-induction2 lifting-strict-decide has-value_wf_base base_wf is-exception_wf evodd-induction param-W-induction
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry isectElimination baseClosed isect_memberEquality voidElimination voidEquality independent_isectElimination independent_pairFormation lambdaFormation callbyvalueApply baseApply closedConclusion hypothesisEquality applyExceptionCases inrFormation imageMemberEquality imageElimination inlFormation because_Cache

Latex:
\mforall{}[Q:b:\mBbbB{}  {}\mrightarrow{}  (pw-evenodd()  b)  {}\mrightarrow{}  \mBbbP{}]
    (Q[tt;evodd-zero()]
    {}\mRightarrow{}  (\mforall{}b:\mBbbB{}.  \mforall{}x:pw-evenodd()  b.    (Q[b;x]  {}\mRightarrow{}  Q[\mneg{}\msubb{}b;evodd-succ(x)]))
    {}\mRightarrow{}  (\mforall{}b:\mBbbB{}.  \mforall{}n:pw-evenodd()  b.    Q[b;n]))



Date html generated: 2018_05_21-PM-00_05_32
Last ObjectModification: 2018_05_19-AM-07_00_31

Theory : co-recursion


Home Index