Nuprl Lemma : evodd-induction

[Q:b:𝔹 ⟶ (pw-evenodd() b) ⟶ ℙ]
  ((∀b:𝔹. ∀a:b tt?. ∀f:case of inl(x) => Void inr(x) => Unit ⟶ (pw-evenodd() bb)).
      ((∀x:case of inl(x) => Void inr(x) => Unit. Q[¬bb;f x])  Q[b;pW-sup(a;f)]))
   (∀b:𝔹. ∀n:pw-evenodd() b.  Q[b;n]))


Proof




Definitions occuring in Statement :  pw-evenodd: pw-evenodd() pW-sup: pW-sup(a;f) bnot: ¬bb btrue: tt bool: 𝔹 uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] implies:  Q unit: Unit apply: a function: x:A ⟶ B[x] decide: case of inl(x) => s[x] inr(y) => t[y] union: left right void: Void equal: t ∈ T
Definitions unfolded in proof :  pw-evenodd: pw-evenodd() uall: [x:A]. B[x] implies:  Q member: t ∈ T so_lambda: λ2x.t[x] prop: so_apply: x[s] so_lambda: λ2y.t[x; y] all: x:A. B[x] so_apply: x[s1;s2] so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3]
Lemmas referenced :  param-W-induction bool_wf equal-wf-T-base unit_wf2 equal_wf bnot_wf all_wf param-W_wf pW-sup_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis sqequalRule lambdaEquality unionEquality hypothesisEquality baseClosed equalityTransitivity equalitySymmetry because_Cache unionElimination voidEquality dependent_functionElimination independent_functionElimination functionEquality applyEquality cumulativity universeEquality

Latex:
\mforall{}[Q:b:\mBbbB{}  {}\mrightarrow{}  (pw-evenodd()  b)  {}\mrightarrow{}  \mBbbP{}]
    ((\mforall{}b:\mBbbB{}.  \mforall{}a:b  =  tt?.  \mforall{}f:case  a  of  inl(x)  =>  Void  |  inr(x)  =>  Unit  {}\mrightarrow{}  (pw-evenodd()  (\mneg{}\msubb{}b)).
            ((\mforall{}x:case  a  of  inl(x)  =>  Void  |  inr(x)  =>  Unit.  Q[\mneg{}\msubb{}b;f  x])  {}\mRightarrow{}  Q[b;pW-sup(a;f)]))
    {}\mRightarrow{}  (\mforall{}b:\mBbbB{}.  \mforall{}n:pw-evenodd()  b.    Q[b;n]))



Date html generated: 2019_06_20-PM-00_36_20
Last ObjectModification: 2018_08_21-PM-01_53_41

Theory : co-recursion


Home Index