Nuprl Lemma : evodd-induction2
∀[Q:b:𝔹 ⟶ (pw-evenodd() b) ⟶ ℙ]
  (Q[tt;evodd-zero()]
  
⇒ (∀b:𝔹. ∀x:pw-evenodd() b.  (Q[b;x] 
⇒ Q[¬bb;evodd-succ(x)]))
  
⇒ (∀b:𝔹. ∀n:pw-evenodd() b.  Q[b;n]))
Proof
Definitions occuring in Statement : 
evodd-succ: evodd-succ(n)
, 
evodd-zero: evodd-zero()
, 
pw-evenodd: pw-evenodd()
, 
bnot: ¬bb
, 
btrue: tt
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
unit: Unit
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
squash: ↓T
, 
guard: {T}
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
sq_type: SQType(T)
, 
evodd-zero: evodd-zero()
, 
pw-evenodd: pw-evenodd()
, 
so_lambda: λ2x y.t[x; y]
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
evodd-succ: evodd-succ(n)
Lemmas referenced : 
evodd-induction, 
all_wf, 
bool_wf, 
bnot_wf, 
unit_wf2, 
pw-evenodd_wf, 
equal-wf-T-base, 
evodd-succ_wf, 
subtype_rel-equal, 
equal_wf, 
bnot_bnot_elim, 
iff_weakening_equal, 
btrue_wf, 
evodd-zero_wf, 
subtype_base_sq, 
bool_subtype_base, 
pW-sup_wf, 
squash_wf, 
true_wf, 
param-W_wf, 
void_wf, 
subtype_rel_dep_function, 
subtype_rel_self
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaFormation, 
independent_functionElimination, 
unionElimination, 
sqequalRule, 
equalityElimination, 
voidEquality, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
voidElimination, 
functionEquality, 
unionEquality, 
baseClosed, 
because_Cache, 
universeEquality, 
independent_isectElimination, 
instantiate, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
cumulativity, 
dependent_functionElimination, 
addLevel, 
hyp_replacement, 
levelHypothesis, 
inlEquality, 
axiomEquality, 
inrEquality
Latex:
\mforall{}[Q:b:\mBbbB{}  {}\mrightarrow{}  (pw-evenodd()  b)  {}\mrightarrow{}  \mBbbP{}]
    (Q[tt;evodd-zero()]
    {}\mRightarrow{}  (\mforall{}b:\mBbbB{}.  \mforall{}x:pw-evenodd()  b.    (Q[b;x]  {}\mRightarrow{}  Q[\mneg{}\msubb{}b;evodd-succ(x)]))
    {}\mRightarrow{}  (\mforall{}b:\mBbbB{}.  \mforall{}n:pw-evenodd()  b.    Q[b;n]))
Date html generated:
2017_04_14-AM-07_43_21
Last ObjectModification:
2017_02_27-PM-03_14_09
Theory : co-recursion
Home
Index