Nuprl Lemma : evodd-induction2

[Q:b:𝔹 ⟶ (pw-evenodd() b) ⟶ ℙ]
  (Q[tt;evodd-zero()]
   (∀b:𝔹. ∀x:pw-evenodd() b.  (Q[b;x]  Q[¬bb;evodd-succ(x)]))
   (∀b:𝔹. ∀n:pw-evenodd() b.  Q[b;n]))


Proof




Definitions occuring in Statement :  evodd-succ: evodd-succ(n) evodd-zero: evodd-zero() pw-evenodd: pw-evenodd() bnot: ¬bb btrue: tt bool: 𝔹 uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q all: x:A. B[x] prop: so_lambda: λ2x.t[x] so_apply: x[s1;s2] so_apply: x[s] unit: Unit subtype_rel: A ⊆B uimplies: supposing a squash: T guard: {T} true: True iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q sq_type: SQType(T) evodd-zero: evodd-zero() pw-evenodd: pw-evenodd() so_lambda: λ2y.t[x; y] so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] bnot: ¬bb ifthenelse: if then else fi  btrue: tt evodd-succ: evodd-succ(n)
Lemmas referenced :  evodd-induction all_wf bool_wf bnot_wf unit_wf2 pw-evenodd_wf equal-wf-T-base evodd-succ_wf subtype_rel-equal equal_wf bnot_bnot_elim iff_weakening_equal btrue_wf evodd-zero_wf subtype_base_sq bool_subtype_base pW-sup_wf squash_wf true_wf param-W_wf void_wf subtype_rel_dep_function subtype_rel_self
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaFormation independent_functionElimination unionElimination sqequalRule equalityElimination voidEquality lambdaEquality applyEquality functionExtensionality voidElimination functionEquality unionEquality baseClosed because_Cache universeEquality independent_isectElimination instantiate imageElimination natural_numberEquality imageMemberEquality equalityTransitivity equalitySymmetry productElimination cumulativity dependent_functionElimination addLevel hyp_replacement levelHypothesis inlEquality axiomEquality inrEquality

Latex:
\mforall{}[Q:b:\mBbbB{}  {}\mrightarrow{}  (pw-evenodd()  b)  {}\mrightarrow{}  \mBbbP{}]
    (Q[tt;evodd-zero()]
    {}\mRightarrow{}  (\mforall{}b:\mBbbB{}.  \mforall{}x:pw-evenodd()  b.    (Q[b;x]  {}\mRightarrow{}  Q[\mneg{}\msubb{}b;evodd-succ(x)]))
    {}\mRightarrow{}  (\mforall{}b:\mBbbB{}.  \mforall{}n:pw-evenodd()  b.    Q[b;n]))



Date html generated: 2017_04_14-AM-07_43_21
Last ObjectModification: 2017_02_27-PM-03_14_09

Theory : co-recursion


Home Index