Nuprl Lemma : evodd-succ_wf
∀[b:𝔹]. ∀[n:pw-evenodd() (¬bb)].  (evodd-succ(n) ∈ pw-evenodd() b)
Proof
Definitions occuring in Statement : 
evodd-succ: evodd-succ(n)
, 
pw-evenodd: pw-evenodd()
, 
bnot: ¬bb
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
apply: f a
Definitions unfolded in proof : 
pw-evenodd: pw-evenodd()
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
evodd-succ: evodd-succ(n)
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
unit: Unit
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Lemmas referenced : 
pW-sup_wf, 
bool_wf, 
equal-wf-T-base, 
unit_wf2, 
bnot_wf, 
param-W_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
lambdaEquality, 
unionEquality, 
because_Cache, 
unionElimination, 
voidEquality, 
hypothesisEquality, 
inrEquality, 
axiomEquality, 
natural_numberEquality, 
baseClosed, 
instantiate, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
lambdaFormation, 
dependent_functionElimination, 
independent_functionElimination, 
isect_memberEquality
Latex:
\mforall{}[b:\mBbbB{}].  \mforall{}[n:pw-evenodd()  (\mneg{}\msubb{}b)].    (evodd-succ(n)  \mmember{}  pw-evenodd()  b)
Date html generated:
2019_06_20-PM-00_36_22
Last ObjectModification:
2018_08_21-PM-01_53_42
Theory : co-recursion
Home
Index