Nuprl Lemma : evodd-succ_wf

[b:𝔹]. ∀[n:pw-evenodd() bb)].  (evodd-succ(n) ∈ pw-evenodd() b)


Proof




Definitions occuring in Statement :  evodd-succ: evodd-succ(n) pw-evenodd: pw-evenodd() bnot: ¬bb bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T apply: a
Definitions unfolded in proof :  pw-evenodd: pw-evenodd() uall: [x:A]. B[x] member: t ∈ T evodd-succ: evodd-succ(n) so_lambda: λ2x.t[x] prop: so_apply: x[s] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] unit: Unit all: x:A. B[x] implies:  Q
Lemmas referenced :  pW-sup_wf bool_wf equal-wf-T-base unit_wf2 bnot_wf param-W_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaEquality unionEquality because_Cache unionElimination voidEquality hypothesisEquality inrEquality axiomEquality natural_numberEquality baseClosed instantiate equalityTransitivity equalitySymmetry applyEquality lambdaFormation dependent_functionElimination independent_functionElimination isect_memberEquality

Latex:
\mforall{}[b:\mBbbB{}].  \mforall{}[n:pw-evenodd()  (\mneg{}\msubb{}b)].    (evodd-succ(n)  \mmember{}  pw-evenodd()  b)



Date html generated: 2019_06_20-PM-00_36_22
Last ObjectModification: 2018_08_21-PM-01_53_42

Theory : co-recursion


Home Index