Nuprl Lemma : pw-evenodd_wf

pw-evenodd() ∈ 𝔹 ⟶ Type


Proof




Definitions occuring in Statement :  pw-evenodd: pw-evenodd() bool: 𝔹 member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  pw-evenodd: pw-evenodd() member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2x.t[x] prop: so_apply: x[s] so_lambda: λ2y.t[x; y] all: x:A. B[x] implies:  Q so_apply: x[s1;s2] so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3]
Lemmas referenced :  param-W_wf bool_wf equal-wf-T-base unit_wf2 equal_wf bnot_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaEquality unionEquality hypothesisEquality baseClosed equalityTransitivity equalitySymmetry because_Cache lambdaFormation unionElimination voidEquality dependent_functionElimination independent_functionElimination

Latex:
pw-evenodd()  \mmember{}  \mBbbB{}  {}\mrightarrow{}  Type



Date html generated: 2019_06_20-PM-00_36_18
Last ObjectModification: 2018_08_21-PM-01_53_35

Theory : co-recursion


Home Index