Nuprl Lemma : pw-evenodd_wf
pw-evenodd() ∈ 𝔹 ⟶ Type
Proof
Definitions occuring in Statement : 
pw-evenodd: pw-evenodd()
, 
bool: 𝔹
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
pw-evenodd: pw-evenodd()
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
so_lambda: λ2x y.t[x; y]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
so_apply: x[s1;s2]
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
Lemmas referenced : 
param-W_wf, 
bool_wf, 
equal-wf-T-base, 
unit_wf2, 
equal_wf, 
bnot_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
lambdaEquality, 
unionEquality, 
hypothesisEquality, 
baseClosed, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
lambdaFormation, 
unionElimination, 
voidEquality, 
dependent_functionElimination, 
independent_functionElimination
Latex:
pw-evenodd()  \mmember{}  \mBbbB{}  {}\mrightarrow{}  Type
Date html generated:
2019_06_20-PM-00_36_18
Last ObjectModification:
2018_08_21-PM-01_53_35
Theory : co-recursion
Home
Index