Nuprl Lemma : evodd-enum_wf

[n:ℕ]. (evodd-enum(n) ∈ b:𝔹 × (pw-evenodd() b))


Proof




Definitions occuring in Statement :  evodd-enum: evodd-enum(n) pw-evenodd: pw-evenodd() nat: bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T apply: a product: x:A × B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T evodd-enum: evodd-enum(n) subtype_rel: A ⊆B uimplies: supposing a squash: T true: True guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q nat:
Lemmas referenced :  primrec_wf bool_wf pw-evenodd_wf btrue_wf evodd-zero_wf bnot_wf evodd-succ_wf subtype_rel-equal equal_wf bnot_bnot_elim iff_weakening_equal int_seg_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin productEquality hypothesis applyEquality hypothesisEquality dependent_pairEquality because_Cache lambdaEquality productElimination independent_isectElimination instantiate imageElimination universeEquality natural_numberEquality imageMemberEquality baseClosed equalityTransitivity equalitySymmetry independent_functionElimination setElimination rename axiomEquality

Latex:
\mforall{}[n:\mBbbN{}].  (evodd-enum(n)  \mmember{}  b:\mBbbB{}  \mtimes{}  (pw-evenodd()  b))



Date html generated: 2017_04_14-AM-07_43_23
Last ObjectModification: 2017_02_27-PM-03_14_02

Theory : co-recursion


Home Index