Nuprl Lemma : evodd-enum_wf
∀[n:ℕ]. (evodd-enum(n) ∈ b:𝔹 × (pw-evenodd() b))
Proof
Definitions occuring in Statement : 
evodd-enum: evodd-enum(n), 
pw-evenodd: pw-evenodd(), 
nat: ℕ, 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
apply: f a, 
product: x:A × B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
evodd-enum: evodd-enum(n), 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
squash: ↓T, 
true: True, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
nat: ℕ
Lemmas referenced : 
primrec_wf, 
bool_wf, 
pw-evenodd_wf, 
btrue_wf, 
evodd-zero_wf, 
bnot_wf, 
evodd-succ_wf, 
subtype_rel-equal, 
equal_wf, 
bnot_bnot_elim, 
iff_weakening_equal, 
int_seg_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
productEquality, 
hypothesis, 
applyEquality, 
hypothesisEquality, 
dependent_pairEquality, 
because_Cache, 
lambdaEquality, 
productElimination, 
independent_isectElimination, 
instantiate, 
imageElimination, 
universeEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
setElimination, 
rename, 
axiomEquality
Latex:
\mforall{}[n:\mBbbN{}].  (evodd-enum(n)  \mmember{}  b:\mBbbB{}  \mtimes{}  (pw-evenodd()  b))
Date html generated:
2017_04_14-AM-07_43_23
Last ObjectModification:
2017_02_27-PM-03_14_02
Theory : co-recursion
Home
Index