Step
*
1
1
1
1
1
1
of Lemma
pW-sup_wf
.....wf.....
1. P : Type
2. A : P ⟶ Type
3. B : p:P ⟶ A[p] ⟶ Type
4. C : p:P ⟶ a:A[p] ⟶ B[p;a] ⟶ P
5. pco-W ∈ P ⟶ Type
6. par : P
7. a : A[par]
8. f : b:B[par;a] ⟶ (pW C[par;a;b])
9. pW-sup(a;f) ∈ pco-W par
10. path : ℕ ⟶ pcw-step(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b])
11. ∀i:ℕ. StepRel(path i;path (i + 1))
12. p : P
13. a1 : A[p]
14. w1 : b:B[p;a1] ⟶ (pco-W C[p;a1;b])
15. b : B[p;a1]
16. (path 0) = <p, <a1, w1>, inl b> ∈ pcw-step(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b])
17. p = par ∈ P
18. pco-W par ≡ a:A[par] × (b:B[par;a] ⟶ (pco-W C[par;a;b]))
19. a1 = a ∈ A[par]
20. w1 = f ∈ (b:B[par;a1] ⟶ (pco-W C[par;a1;b]))
21. b ∈ B[par;a]
22. (f b) = (f b) ∈ (pco-W C[par;a;b])
23. ∀path:Path. (StepAgree(path 0;C[par;a;b];f b)
⇒ (↓∃n:ℕ. Barred(pcw-partial(path;n))))
⊢ λx.(path (x + 1)) ∈ Path
BY
{ (BLemma `pcw-path-shift` THEN Auto) }
Latex:
Latex:
.....wf.....
1. P : Type
2. A : P {}\mrightarrow{} Type
3. B : p:P {}\mrightarrow{} A[p] {}\mrightarrow{} Type
4. C : p:P {}\mrightarrow{} a:A[p] {}\mrightarrow{} B[p;a] {}\mrightarrow{} P
5. pco-W \mmember{} P {}\mrightarrow{} Type
6. par : P
7. a : A[par]
8. f : b:B[par;a] {}\mrightarrow{} (pW C[par;a;b])
9. pW-sup(a;f) \mmember{} pco-W par
10. path : \mBbbN{} {}\mrightarrow{} pcw-step(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b])
11. \mforall{}i:\mBbbN{}. StepRel(path i;path (i + 1))
12. p : P
13. a1 : A[p]
14. w1 : b:B[p;a1] {}\mrightarrow{} (pco-W C[p;a1;b])
15. b : B[p;a1]
16. (path 0) = <p, <a1, w1>, inl b>
17. p = par
18. pco-W par \mequiv{} a:A[par] \mtimes{} (b:B[par;a] {}\mrightarrow{} (pco-W C[par;a;b]))
19. a1 = a
20. w1 = f
21. b \mmember{} B[par;a]
22. (f b) = (f b)
23. \mforall{}path:Path. (StepAgree(path 0;C[par;a;b];f b) {}\mRightarrow{} (\mdownarrow{}\mexists{}n:\mBbbN{}. Barred(pcw-partial(path;n))))
\mvdash{} \mlambda{}x.(path (x + 1)) \mmember{} Path
By
Latex:
(BLemma `pcw-path-shift` THEN Auto)
Home
Index