Step * 1 1 1 1 of Lemma stream-lex-monotonic


1. Type
2. ∀x,y:T.  Dec(x y ∈ T)
3. T ⟶ T ⟶ ℙ
4. Trans(T;x,y.x y)
5. AntiSym(T;x,y.x y)
6. T ⟶ T ⟶ T
7. ∀x,y,u,v:T.  ((x y)  (u v)  ((f u) (f v)))
8. ∀x,y,u,v:T.  ((x y)  (u v)  ((x y ∈ T) ∧ (u v ∈ T)))  ((f u) (f v) ∈ T)))
9. stream(T)
10. stream(T)
11. stream(T)
12. stream(T)
13. stream(T)
14. stream-zip(f;a;c) ∈ stream(T)
15. stream(T)
16. stream-zip(f;b;d) ∈ stream(T)
17. stream-lex(T;R) b
18. stream-lex(T;R) d
⊢ s-hd(stream-zip(f;a;c)) s-hd(stream-zip(f;b;d))
BY
((RWO "stream-lex-iff" (-2) THENA Auto)
   THEN (RWO "stream-lex-iff" (-1) THENA Auto)
   THEN RWO "hd-stream-zip" 0
   THEN Auto) }


Latex:


Latex:

1.  T  :  Type
2.  \mforall{}x,y:T.    Dec(x  =  y)
3.  R  :  T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}
4.  Trans(T;x,y.x  R  y)
5.  AntiSym(T;x,y.x  R  y)
6.  f  :  T  {}\mrightarrow{}  T  {}\mrightarrow{}  T
7.  \mforall{}x,y,u,v:T.    ((x  R  y)  {}\mRightarrow{}  (u  R  v)  {}\mRightarrow{}  ((f  x  u)  R  (f  y  v)))
8.  \mforall{}x,y,u,v:T.    ((x  R  y)  {}\mRightarrow{}  (u  R  v)  {}\mRightarrow{}  (\mneg{}((x  =  y)  \mwedge{}  (u  =  v)))  {}\mRightarrow{}  (\mneg{}((f  x  u)  =  (f  y  v))))
9.  x  :  stream(T)
10.  y  :  stream(T)
11.  a  :  stream(T)
12.  b  :  stream(T)
13.  c  :  stream(T)
14.  stream-zip(f;a;c)  \mmember{}  stream(T)
15.  d  :  stream(T)
16.  stream-zip(f;b;d)  \mmember{}  stream(T)
17.  a  stream-lex(T;R)  b
18.  c  stream-lex(T;R)  d
\mvdash{}  s-hd(stream-zip(f;a;c))  R  s-hd(stream-zip(f;b;d))


By


Latex:
((RWO  "stream-lex-iff"  (-2)  THENA  Auto)
  THEN  (RWO  "stream-lex-iff"  (-1)  THENA  Auto)
  THEN  RWO  "hd-stream-zip"  0
  THEN  Auto)




Home Index