Nuprl Lemma : stream-lex-monotonic

T:Type
  ((∀x,y:T.  Dec(x y ∈ T))
   (∀R:T ⟶ T ⟶ ℙ
        (Trans(T;x,y.x y)
         AntiSym(T;x,y.x y)
         (∀f:T ⟶ T ⟶ T
              ((∀x,y,u,v:T.  ((x y)  (u v)  ((f u) (f v))))
               (∀x,y,u,v:T.  ((x y)  (u v)  ((x y ∈ T) ∧ (u v ∈ T)))  ((f u) (f v) ∈ T))))
               (∀a,b,c,d:stream(T).
                    ((a stream-lex(T;R) b)
                     (c stream-lex(T;R) d)
                     (stream-zip(f;a;c) stream-lex(T;R) stream-zip(f;b;d)))))))))


Proof




Definitions occuring in Statement :  stream-lex: stream-lex(T;R) stream-zip: stream-zip(f;as;bs) stream: stream(A) anti_sym: AntiSym(T;x,y.R[x; y]) trans: Trans(T;x,y.E[x; y]) decidable: Dec(P) prop: infix_ap: y all: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] prop: and: P ∧ Q subtype_rel: A ⊆B so_apply: x[s] rel-monotone: rel-monotone{i:l}(T;R.F[R]) rel_implies: R1 => R2 infix_ap: y cand: c∧ B stream-lex: stream-lex(T;R) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] guard: {T} exists: x:A. B[x] iff: ⇐⇒ Q top: Top uimplies: supposing a decidable: Dec(P) or: P ∨ Q not: ¬A false: False
Lemmas referenced :  implies-bigrel infix_ap_wf s-hd_wf equal_wf stream_wf s-tl_wf all_wf stream-lex_wf not_wf anti_sym_wf trans_wf decidable_wf exists_wf stream-zip_wf stream-lex-iff stream-subtype top_wf hd-stream-zip tl-stream-zip member_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache dependent_functionElimination sqequalRule lambdaEquality productEquality instantiate cumulativity hypothesisEquality universeEquality functionExtensionality applyEquality hypothesis functionEquality independent_functionElimination productElimination independent_pairFormation promote_hyp equalitySymmetry hyp_replacement applyLambdaEquality isect_memberEquality voidElimination voidEquality independent_isectElimination unionElimination dependent_pairFormation

Latex:
\mforall{}T:Type
    ((\mforall{}x,y:T.    Dec(x  =  y))
    {}\mRightarrow{}  (\mforall{}R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}
                (Trans(T;x,y.x  R  y)
                {}\mRightarrow{}  AntiSym(T;x,y.x  R  y)
                {}\mRightarrow{}  (\mforall{}f:T  {}\mrightarrow{}  T  {}\mrightarrow{}  T
                            ((\mforall{}x,y,u,v:T.    ((x  R  y)  {}\mRightarrow{}  (u  R  v)  {}\mRightarrow{}  ((f  x  u)  R  (f  y  v))))
                            {}\mRightarrow{}  (\mforall{}x,y,u,v:T.
                                        ((x  R  y)  {}\mRightarrow{}  (u  R  v)  {}\mRightarrow{}  (\mneg{}((x  =  y)  \mwedge{}  (u  =  v)))  {}\mRightarrow{}  (\mneg{}((f  x  u)  =  (f  y  v)))))
                            {}\mRightarrow{}  (\mforall{}a,b,c,d:stream(T).
                                        ((a  stream-lex(T;R)  b)
                                        {}\mRightarrow{}  (c  stream-lex(T;R)  d)
                                        {}\mRightarrow{}  (stream-zip(f;a;c)  stream-lex(T;R)  stream-zip(f;b;d)))))))))



Date html generated: 2017_04_14-AM-07_48_23
Last ObjectModification: 2017_02_27-PM-03_21_13

Theory : co-recursion


Home Index