Nuprl Lemma : tl-stream-zip

[f:Top]. ∀[as,bs:stream(Top)].  (s-tl(stream-zip(f;as;bs)) stream-zip(f;s-tl(as);s-tl(bs)))


Proof




Definitions occuring in Statement :  stream-zip: stream-zip(f;as;bs) s-tl: s-tl(s) stream: stream(A) uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T stream-zip: stream-zip(f;as;bs) subtype_rel: A ⊆B guard: {T} uimplies: supposing a all: x:A. B[x] implies:  Q s-tl: s-tl(s) pi2: snd(t) prop:
Lemmas referenced :  stream_wf top_wf stream-ext subtype_rel_weakening equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule hypothesis sqequalAxiom extract_by_obid sqequalHypSubstitution isectElimination thin isect_memberEquality hypothesisEquality because_Cache applyEquality productEquality independent_isectElimination lambdaFormation productElimination equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination

Latex:
\mforall{}[f:Top].  \mforall{}[as,bs:stream(Top)].    (s-tl(stream-zip(f;as;bs))  \msim{}  stream-zip(f;s-tl(as);s-tl(bs)))



Date html generated: 2017_04_14-AM-07_47_48
Last ObjectModification: 2017_02_27-PM-03_18_15

Theory : co-recursion


Home Index