Nuprl Lemma : hd-stream-zip

[f:Top]. ∀[as,bs:stream(Top)].  (s-hd(stream-zip(f;as;bs)) s-hd(as) s-hd(bs))


Proof




Definitions occuring in Statement :  stream-zip: stream-zip(f;as;bs) s-hd: s-hd(s) stream: stream(A) uall: [x:A]. B[x] top: Top apply: a sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: s-nth: s-nth(n;s) eq_int: (i =z j) subtract: m ifthenelse: if then else fi  btrue: tt pi1: fst(t) s-hd: s-hd(s)
Lemmas referenced :  nth-stream-zip false_wf le_wf stream_wf top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_set_memberEquality natural_numberEquality sqequalRule independent_pairFormation lambdaFormation hypothesis callbyvalueReduce sqleReflexivity sqequalAxiom isect_memberEquality because_Cache

Latex:
\mforall{}[f:Top].  \mforall{}[as,bs:stream(Top)].    (s-hd(stream-zip(f;as;bs))  \msim{}  f  s-hd(as)  s-hd(bs))



Date html generated: 2016_05_14-AM-06_23_35
Last ObjectModification: 2015_12_26-AM-11_58_46

Theory : co-recursion


Home Index