Nuprl Lemma : stream-lex-iff

T:Type. ∀R:T ⟶ T ⟶ ℙ. ∀s1,s2:stream(T).
  (s1 stream-lex(T;R) s2 ⇐⇒ (s-hd(s1) s-hd(s2)) ∧ ((s-hd(s1) s-hd(s2) ∈ T)  (s-tl(s1) stream-lex(T;R) s-tl(s2))))


Proof




Definitions occuring in Statement :  stream-lex: stream-lex(T;R) s-tl: s-tl(s) s-hd: s-hd(s) stream: stream(A) prop: infix_ap: y all: x:A. B[x] iff: ⇐⇒ Q implies:  Q and: P ∧ Q function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] infix_ap: y implies:  Q prop: so_apply: x[s] stream-lex: stream-lex(T;R) rel_implies: R1 => R2 and: P ∧ Q iff: ⇐⇒ Q rev_implies:  Q cand: c∧ B guard: {T} rel-monotone: rel-monotone{i:l}(T;R.F[R]) rel-continuous: rel-continuous{i:l}(T;R.F[R]) isect-rel: isect-rel(T;i.R[i]) nat: le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A
Lemmas referenced :  bigrel-iff and_wf s-hd_wf equal_wf s-tl_wf stream_wf stream-lex_wf all_wf nat_wf false_wf le_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin because_Cache dependent_functionElimination sqequalRule lambdaEquality applyEquality hypothesisEquality hypothesis functionEquality cumulativity universeEquality independent_functionElimination productElimination independent_pairFormation dependent_set_memberEquality natural_numberEquality

Latex:
\mforall{}T:Type.  \mforall{}R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}.  \mforall{}s1,s2:stream(T).
    (s1  stream-lex(T;R)  s2
    \mLeftarrow{}{}\mRightarrow{}  (s-hd(s1)  R  s-hd(s2))  \mwedge{}  ((s-hd(s1)  =  s-hd(s2))  {}\mRightarrow{}  (s-tl(s1)  stream-lex(T;R)  s-tl(s2))))



Date html generated: 2016_05_14-AM-06_24_02
Last ObjectModification: 2015_12_26-AM-11_58_36

Theory : co-recursion


Home Index