Nuprl Lemma : bigrel-iff

[T:Type]
  ∀F:(T ⟶ T ⟶ ℙ) ⟶ T ⟶ T ⟶ ℙ
    (rel-monotone{i:l}(T;R.F[R])  rel-continuous{i:l}(T;R.F[R])  (∨R.F[R] => F[∨R.F[R]] ∧ F[∨R.F[R]] => ∨R.F[R]))


Proof




Definitions occuring in Statement :  bigrel: R.F[R] rel-continuous: rel-continuous{i:l}(T;R.F[R]) rel-monotone: rel-monotone{i:l}(T;R.F[R]) rel_implies: R1 => R2 uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q and: P ∧ Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q and: P ∧ Q cand: c∧ B member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] rel-continuous: rel-continuous{i:l}(T;R.F[R]) nat: bigrel: R.F[R] rel_implies: R1 => R2 isect-rel: isect-rel(T;i.R[i]) infix_ap: y decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q not: ¬A rev_implies:  Q false: False uiff: uiff(P;Q) uimplies: supposing a sq_stable: SqStable(P) squash: T subtract: m subtype_rel: A ⊆B top: Top le: A ≤ B less_than': less_than'(a;b) true: True guard: {T} sq_type: SQType(T) ifthenelse: if then else fi  btrue: tt bfalse: ff bool: 𝔹 unit: Unit it: exists: x:A. B[x] bnot: ¬bb assert: b ge: i ≥  int_upper: {i...} rel-monotone: rel-monotone{i:l}(T;R.F[R])
Lemmas referenced :  rel-continuous_wf rel-monotone_wf primrec_wf true_wf int_seg_wf nat_wf decidable__le false_wf not-le-2 sq_stable__le condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel le_wf primrec-unroll infix_ap_wf isect-rel_wf eq_int_wf le_antisymmetry_iff assert_wf bnot_wf not_wf equal-wf-T-base add-subtract-cancel bool_cases subtype_base_sq bool_wf bool_subtype_base eqtt_to_assert assert_of_eq_int eqff_to_assert iff_transitivity iff_weakening_uiff assert_of_bnot equal_wf bool_cases_sqequal assert-bnot neg_assert_of_eq_int int_upper_subtype_nat nat_properties nequal-le-implies bigrel_wf subtract_wf minus-minus
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut independent_pairFormation hypothesis introduction extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality sqequalRule lambdaEquality applyEquality functionExtensionality functionEquality universeEquality dependent_functionElimination instantiate because_Cache natural_numberEquality setElimination rename independent_functionElimination dependent_set_memberEquality addEquality unionElimination voidElimination productElimination independent_isectElimination imageMemberEquality baseClosed imageElimination isect_memberEquality voidEquality intEquality minusEquality equalityTransitivity equalitySymmetry impliesFunctionality equalityElimination dependent_pairFormation promote_hyp hypothesis_subsumption

Latex:
\mforall{}[T:Type]
    \mforall{}F:(T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{})  {}\mrightarrow{}  T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}
        (rel-monotone\{i:l\}(T;R.F[R])
        {}\mRightarrow{}  rel-continuous\{i:l\}(T;R.F[R])
        {}\mRightarrow{}  (\mvee{}R.F[R]  =>  F[\mvee{}R.F[R]]  \mwedge{}  F[\mvee{}R.F[R]]  =>  \mvee{}R.F[R]))



Date html generated: 2017_04_14-AM-07_38_49
Last ObjectModification: 2017_02_27-PM-03_10_41

Theory : relations


Home Index