Nuprl Lemma : bigrel_wf
∀[T:𝕌']. ∀[F:(T ⟶ T ⟶ ℙ) ⟶ T ⟶ T ⟶ ℙ].  (νR.F[R] ∈ T ⟶ T ⟶ ℙ)
Proof
Definitions occuring in Statement : 
bigrel: νR.F[R]
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
bigrel: νR.F[R]
, 
isect-rel: ⋂i:T. R[i]
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
nat: ℕ
Lemmas referenced : 
all_wf, 
nat_wf, 
primrec_wf, 
true_wf, 
int_seg_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lambdaEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
applyEquality, 
instantiate, 
functionEquality, 
hypothesisEquality, 
universeEquality, 
natural_numberEquality, 
setElimination, 
rename, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[T:\mBbbU{}'].  \mforall{}[F:(T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{})  {}\mrightarrow{}  T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    (\mnu{}R.F[R]  \mmember{}  T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{})
Date html generated:
2019_06_20-PM-00_31_31
Last ObjectModification:
2018_08_04-PM-05_14_24
Theory : relations
Home
Index