Nuprl Lemma : bigrel_wf

[T:𝕌']. ∀[F:(T ⟶ T ⟶ ℙ) ⟶ T ⟶ T ⟶ ℙ].  R.F[R] ∈ T ⟶ T ⟶ ℙ)


Proof




Definitions occuring in Statement :  bigrel: νR.F[R] uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bigrel: νR.F[R] isect-rel: i:T. R[i] so_lambda: λ2x.t[x] prop: so_apply: x[s] nat:
Lemmas referenced :  all_wf nat_wf primrec_wf true_wf int_seg_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lambdaEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis applyEquality instantiate functionEquality hypothesisEquality universeEquality natural_numberEquality setElimination rename axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[T:\mBbbU{}'].  \mforall{}[F:(T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{})  {}\mrightarrow{}  T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    (\mnu{}R.F[R]  \mmember{}  T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{})



Date html generated: 2019_06_20-PM-00_31_31
Last ObjectModification: 2018_08_04-PM-05_14_24

Theory : relations


Home Index