Nuprl Lemma : rel-continuous_wf
∀[T:Type]. ∀[F:(T ⟶ T ⟶ ℙ) ⟶ T ⟶ T ⟶ ℙ].  (rel-continuous{i:l}(T;R.F[R]) ∈ ℙ')
Proof
Definitions occuring in Statement : 
rel-continuous: rel-continuous{i:l}(T;R.F[R])
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
rel-continuous: rel-continuous{i:l}(T;R.F[R])
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
all_wf, 
nat_wf, 
rel_implies_wf, 
isect-rel_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
thin, 
instantiate, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
functionEquality, 
cumulativity, 
hypothesis, 
hypothesisEquality, 
universeEquality, 
lambdaEquality, 
applyEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[T:Type].  \mforall{}[F:(T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{})  {}\mrightarrow{}  T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    (rel-continuous\{i:l\}(T;R.F[R])  \mmember{}  \mBbbP{}')
Date html generated:
2016_05_14-AM-06_04_59
Last ObjectModification:
2015_12_26-AM-11_32_55
Theory : relations
Home
Index