Nuprl Lemma : rel-monotone_wf

[T:Type]. ∀[F:(T ⟶ T ⟶ ℙ) ⟶ T ⟶ T ⟶ ℙ].  (rel-monotone{i:l}(T;R.F[R]) ∈ ℙ')


Proof




Definitions occuring in Statement :  rel-monotone: rel-monotone{i:l}(T;R.F[R]) uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rel-monotone: rel-monotone{i:l}(T;R.F[R]) prop: so_lambda: λ2x.t[x] implies:  Q so_apply: x[s]
Lemmas referenced :  all_wf rel_implies_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule thin instantiate lemma_by_obid sqequalHypSubstitution isectElimination functionEquality cumulativity hypothesisEquality universeEquality lambdaEquality hypothesis applyEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[T:Type].  \mforall{}[F:(T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{})  {}\mrightarrow{}  T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    (rel-monotone\{i:l\}(T;R.F[R])  \mmember{}  \mBbbP{}')



Date html generated: 2016_05_14-AM-06_04_56
Last ObjectModification: 2015_12_26-AM-11_33_01

Theory : relations


Home Index