Nuprl Lemma : stream-subtype
∀[A,B:Type].  stream(A) ⊆r stream(B) supposing A ⊆r B
Proof
Definitions occuring in Statement : 
stream: stream(A)
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
stream: stream(A)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
corec-subtype-corec2, 
subtype_rel_product, 
subtype_rel_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
sqequalRule, 
lambdaEquality, 
productEquality, 
hypothesisEquality, 
universeEquality, 
independent_isectElimination, 
lambdaFormation, 
hypothesis, 
because_Cache, 
axiomEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[A,B:Type].    stream(A)  \msubseteq{}r  stream(B)  supposing  A  \msubseteq{}r  B
Date html generated:
2016_05_14-AM-06_22_05
Last ObjectModification:
2015_12_26-AM-11_59_46
Theory : co-recursion
Home
Index