Nuprl Lemma : stream-subtype

[A,B:Type].  stream(A) ⊆stream(B) supposing A ⊆B


Proof




Definitions occuring in Statement :  stream: stream(A) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a stream: stream(A) so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] implies:  Q subtype_rel: A ⊆B
Lemmas referenced :  corec-subtype-corec2 subtype_rel_product subtype_rel_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin sqequalRule lambdaEquality productEquality hypothesisEquality universeEquality independent_isectElimination lambdaFormation hypothesis because_Cache axiomEquality isect_memberEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[A,B:Type].    stream(A)  \msubseteq{}r  stream(B)  supposing  A  \msubseteq{}r  B



Date html generated: 2016_05_14-AM-06_22_05
Last ObjectModification: 2015_12_26-AM-11_59_46

Theory : co-recursion


Home Index