Nuprl Lemma : implies-bigrel
∀[T:Type]
  ∀F:(T ⟶ T ⟶ ℙ) ⟶ T ⟶ T ⟶ ℙ. (rel-monotone{i:l}(T;R.F[R]) 
⇒ (∀R':T ⟶ T ⟶ ℙ. (R' => F[R'] 
⇒ R' => νR.F[R])))
Proof
Definitions occuring in Statement : 
bigrel: νR.F[R]
, 
rel-monotone: rel-monotone{i:l}(T;R.F[R])
, 
rel_implies: R1 => R2
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bigrel: νR.F[R]
, 
member: t ∈ T
, 
so_apply: x[s]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
lt_int: i <z j
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
guard: {T}
, 
subtract: n - m
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
true: True
, 
not: ¬A
, 
false: False
, 
subtype_rel: A ⊆r B
, 
less_than: a < b
, 
squash: ↓T
, 
cand: A c∧ B
, 
nat: ℕ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
infix_ap: x f y
, 
rel_implies: R1 => R2
, 
rel-monotone: rel-monotone{i:l}(T;R.F[R])
, 
rel_rev_implies: R1 
⇐ R2
, 
isect-rel: ⋂i:T. R[i]
Lemmas referenced : 
rel_implies_wf, 
rel-monotone_wf, 
istype-universe, 
primrec-unroll, 
btrue_wf, 
uiff_transitivity, 
equal-wf-base, 
bool_wf, 
assert_wf, 
lt_int_wf, 
less_than_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
le_int_wf, 
le_wf, 
bnot_wf, 
eqff_to_assert, 
assert_functionality_wrt_uiff, 
bnot_of_lt_int, 
assert_of_le_int, 
int_subtype_base, 
less-iff-le, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
add-commutes, 
le-add-cancel2, 
primrec_wf, 
subtract_wf, 
decidable__le, 
istype-false, 
not-le-2, 
condition-implies-le, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
minus-add, 
minus-minus, 
add-swap, 
le-add-cancel, 
istype-le, 
true_wf, 
int_seg_wf, 
istype-int, 
istype-less_than, 
primrec-wf2, 
istype-nat, 
subtype_rel_self, 
rel_implies_functionality, 
rel_implies_weakening, 
rel_equivalent_inversion, 
rel_equivalent_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
cut, 
universeIsType, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
functionIsType, 
because_Cache, 
universeEquality, 
sqequalRule, 
lambdaEquality_alt, 
inhabitedIsType, 
instantiate, 
natural_numberEquality, 
Error :memTop, 
unionElimination, 
equalityElimination, 
baseClosed, 
independent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_isectElimination, 
voidElimination, 
equalityIstype, 
dependent_functionElimination, 
rename, 
setElimination, 
baseApply, 
closedConclusion, 
independent_pairFormation, 
imageElimination, 
addEquality, 
functionEquality, 
cumulativity, 
dependent_set_memberEquality_alt, 
minusEquality, 
setIsType
Latex:
\mforall{}[T:Type]
    \mforall{}F:(T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{})  {}\mrightarrow{}  T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}
        (rel-monotone\{i:l\}(T;R.F[R])  {}\mRightarrow{}  (\mforall{}R':T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}.  (R'  =>  F[R']  {}\mRightarrow{}  R'  =>  \mnu{}R.F[R])))
Date html generated:
2020_05_19-PM-09_36_31
Last ObjectModification:
2020_01_04-PM-07_56_52
Theory : relations
Home
Index