Nuprl Lemma : implies-bigrel

[T:Type]
  ∀F:(T ⟶ T ⟶ ℙ) ⟶ T ⟶ T ⟶ ℙ(rel-monotone{i:l}(T;R.F[R])  (∀R':T ⟶ T ⟶ ℙ(R' => F[R']  R' => νR.F[R])))


Proof




Definitions occuring in Statement :  bigrel: νR.F[R] rel-monotone: rel-monotone{i:l}(T;R.F[R]) rel_implies: R1 => R2 uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q bigrel: νR.F[R] member: t ∈ T so_apply: x[s] prop: so_lambda: λ2x.t[x] lt_int: i <j bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bfalse: ff guard: {T} subtract: m le: A ≤ B less_than': less_than'(a;b) true: True not: ¬A false: False subtype_rel: A ⊆B less_than: a < b squash: T cand: c∧ B nat: decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q infix_ap: y rel_implies: R1 => R2 rel-monotone: rel-monotone{i:l}(T;R.F[R]) rel_rev_implies: R1  R2 isect-rel: i:T. R[i]
Lemmas referenced :  rel_implies_wf rel-monotone_wf istype-universe primrec-unroll btrue_wf uiff_transitivity equal-wf-base bool_wf assert_wf lt_int_wf less_than_wf eqtt_to_assert assert_of_lt_int le_int_wf le_wf bnot_wf eqff_to_assert assert_functionality_wrt_uiff bnot_of_lt_int assert_of_le_int int_subtype_base less-iff-le add_functionality_wrt_le add-associates add-zero add-commutes le-add-cancel2 primrec_wf subtract_wf decidable__le istype-false not-le-2 condition-implies-le minus-one-mul zero-add minus-one-mul-top minus-add minus-minus add-swap le-add-cancel istype-le true_wf int_seg_wf istype-int istype-less_than primrec-wf2 istype-nat subtype_rel_self rel_implies_functionality rel_implies_weakening rel_equivalent_inversion rel_equivalent_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt cut universeIsType introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality hypothesis functionIsType because_Cache universeEquality sqequalRule lambdaEquality_alt inhabitedIsType instantiate natural_numberEquality Error :memTop,  unionElimination equalityElimination baseClosed independent_functionElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination voidElimination equalityIstype dependent_functionElimination rename setElimination baseApply closedConclusion independent_pairFormation imageElimination addEquality functionEquality cumulativity dependent_set_memberEquality_alt minusEquality setIsType

Latex:
\mforall{}[T:Type]
    \mforall{}F:(T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{})  {}\mrightarrow{}  T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}
        (rel-monotone\{i:l\}(T;R.F[R])  {}\mRightarrow{}  (\mforall{}R':T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}.  (R'  =>  F[R']  {}\mRightarrow{}  R'  =>  \mnu{}R.F[R])))



Date html generated: 2020_05_19-PM-09_36_31
Last ObjectModification: 2020_01_04-PM-07_56_52

Theory : relations


Home Index